找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bifurcation without Parameters; Stefan Liebscher Book 2015 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spr

[复制链接]
楼主: 诡计
发表于 2025-3-28 18:07:25 | 显示全部楼层
发表于 2025-3-28 19:49:24 | 显示全部楼层
Codimension-One Manifolds of Equilibriation also in Chaps. 5, 9, we removed the manifold of equilibria by multiplying with a singular factor 1∕. or 1∕.. This idea required that there is only one transverse direction to the manifold of equilibria. For such manifolds of codimension one, in phase space, we can generalize the idea.
发表于 2025-3-29 02:50:14 | 显示全部楼层
发表于 2025-3-29 05:47:44 | 显示全部楼层
Book 2015g manifolds of equilibria, at points where normal hyperbolicity of the manifold is violated. The general theory, illustrated by many applications, aims at a geometric understanding of the local dynamics near the bifurcation points.
发表于 2025-3-29 07:46:50 | 显示全部楼层
发表于 2025-3-29 12:01:26 | 显示全部楼层
https://doi.org/10.1007/978-3-319-66990-8 converge monotonically to some equilibrium. The balance law constructed of these two parts, however, can support profiles with oscillatory tails. They emerge from Poincaré–Andronov–Hopf bifurcations without parameters in the associated traveling-wave system.
发表于 2025-3-29 17:24:50 | 显示全部楼层
Application: Oscillatory Profiles in Systems of Hyperbolic Balance Laws converge monotonically to some equilibrium. The balance law constructed of these two parts, however, can support profiles with oscillatory tails. They emerge from Poincaré–Andronov–Hopf bifurcations without parameters in the associated traveling-wave system.
发表于 2025-3-29 23:37:32 | 显示全部楼层
发表于 2025-3-30 02:16:03 | 显示全部楼层
0075-8434 theory is complemented by many applicationsTargeted at mathematicians having at least a basic familiarity with classical bifurcation theory, this monograph provides a systematic classification and analysis of bifurcations without parameters in dynamical systems. Although the methods and concepts ar
发表于 2025-3-30 07:16:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 16:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表