用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bernoulli Numbers and Zeta Functions; Tsuneo Arakawa,Tomoyoshi Ibukiyama,Masanobu Kaneko Book 2014 Springer Japan 2014 Bernoulli numbers a

[复制链接]
查看: 53506|回复: 55
发表于 2025-3-21 17:48:16 | 显示全部楼层 |阅读模式
期刊全称Bernoulli Numbers and Zeta Functions
影响因子2023Tsuneo Arakawa,Tomoyoshi Ibukiyama,Masanobu Kaneko
视频video
发行地址Enables readers to begin reading without any prerequisite and smoothly guides them to more advanced topics in number theory.Provides repeated treatment, from different viewpoints, of both easy and adv
学科分类Springer Monographs in Mathematics
图书封面Titlebook: Bernoulli Numbers and Zeta Functions;  Tsuneo Arakawa,Tomoyoshi Ibukiyama,Masanobu Kaneko Book 2014 Springer Japan 2014 Bernoulli numbers a
影响因子.Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen–von Staudt theorem on the denominators of Bernoulli numbers; Kummer‘s congruence between Bernoulli numbers and a related theory of .p.-adic measures; the Euler–Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitableintegers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; c
Pindex Book 2014
The information of publication is updating

书目名称Bernoulli Numbers and Zeta Functions影响因子(影响力)




书目名称Bernoulli Numbers and Zeta Functions影响因子(影响力)学科排名




书目名称Bernoulli Numbers and Zeta Functions网络公开度




书目名称Bernoulli Numbers and Zeta Functions网络公开度学科排名




书目名称Bernoulli Numbers and Zeta Functions被引频次




书目名称Bernoulli Numbers and Zeta Functions被引频次学科排名




书目名称Bernoulli Numbers and Zeta Functions年度引用




书目名称Bernoulli Numbers and Zeta Functions年度引用学科排名




书目名称Bernoulli Numbers and Zeta Functions读者反馈




书目名称Bernoulli Numbers and Zeta Functions读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:35:11 | 显示全部楼层
发表于 2025-3-22 00:53:13 | 显示全部楼层
发表于 2025-3-22 05:22:46 | 显示全部楼层
发表于 2025-3-22 11:07:03 | 显示全部楼层
https://doi.org/10.1007/978-0-387-72577-2In this chapter, we introduce Barnes’ multiple zeta function, which is a natural generalization of the Hurwitz zeta function, give an analytic continuation, and then express their special values at negative integers by using Bernoulli polynomials.
发表于 2025-3-22 14:59:38 | 显示全部楼层
发表于 2025-3-22 17:26:02 | 显示全部楼层
发表于 2025-3-22 23:49:59 | 显示全部楼层
,The Euler–Maclaurin Summation Formula and the Riemann Zeta Function,In this chapter we give a formula that describes Bernoulli numbers in terms of Stirling numbers. This formula will be used to prove a theorem of Clausen and von Staudtin the next chapter. As an application of this formula, we also introduce an interesting algorithm to compute Bernoulli numbers.
发表于 2025-3-23 02:35:22 | 显示全部楼层
发表于 2025-3-23 08:36:43 | 显示全部楼层
Hurwitz Numbers,In this section, we briefly introduce Hurwitz’s Hurwitz generalization of Bernoulli numbers, known as the Hurwitz numbers.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-7 12:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表