找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Benchmarking, Measuring, and Optimizing; 15th BenchCouncil In Sascha Hunold,Biwei Xie,Kai Shu Conference proceedings 2024 The Editor(s) (if

[复制链接]
楼主: 连结
发表于 2025-3-26 22:49:06 | 显示全部楼层
发表于 2025-3-27 03:53:26 | 显示全部楼层
发表于 2025-3-27 05:46:36 | 显示全部楼层
发表于 2025-3-27 09:28:26 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/b/image/183390.jpg
发表于 2025-3-27 15:51:20 | 显示全部楼层
,Generating High Dimensional Test Data for Topological Data Analysis,sets (possibly from various dimensions .) into an ambient dimension . (.) with rotations. The motivation for this work is to support verification of algorithms to implement TDA computational elements.
发表于 2025-3-27 21:17:44 | 显示全部楼层
,Does AI for Science Need Another ImageNet or Totally Different Benchmarks? A Case Study of Machine domain sensitivity, and cross-dataset generalization capabilities. By setting up the problem instantiation similar to the actual scientific applications, more meaningful performance metrics from the benchmark can be achieved. This suite of metrics has demonstrated a better ability to assess a model’
发表于 2025-3-28 01:24:32 | 显示全部楼层
,MolBench: A Benchmark of AI Models for Molecular Property Prediction,dels, graph-based models, and pre-trained models. The purpose of the work is to establish a fair and reliable benchmark for future innovation in the field of molecular property prediction, emphasizing the importance of multidimensional perspectives.
发表于 2025-3-28 05:19:27 | 显示全部楼层
发表于 2025-3-28 09:07:23 | 显示全部楼层
,Benchmarking Modern Databases for Storing and Profiling Very Large Scale HPC Communication Data,rform different types of fundamental storage and retrieval operations under various conditions. Through this work, we are able to achieve sub-second complex data querying serving up to 64 users and demonstrate a “9.” improvement in insertion latency through parallel data insertion, achieving a laten
发表于 2025-3-28 10:53:38 | 显示全部楼层
,A Linear Combination-Based Method to Construct Proxy Benchmarks for Big Data Workloads,e, we propose a linear combination-based proxy benchmark generation methodology that transforms this problem into solving a system of linear equations. We also design the corresponding algorithms to ensure the system of linear equations is astringency..We generate fifteen proxy benchmarks and evalua
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-21 16:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表