找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Beginning Anomaly Detection Using Python-Based Deep Learning; With Keras and PyTor Sridhar‘Alla,Suman Kalyan Adari Book 20191st edition Sri

[复制链接]
楼主: Jejunum
发表于 2025-3-23 11:57:20 | 显示全部楼层
发表于 2025-3-23 15:23:51 | 显示全部楼层
发表于 2025-3-23 21:56:23 | 显示全部楼层
发表于 2025-3-24 00:07:42 | 显示全部楼层
Traditional Methods of Anomaly Detection,In this chapter, you will learn about traditional methods of anomaly detection. You will also learn how various statistical methods and machine learning algorithms work and how they can be used to detect anomalies and how you can implement anomaly detection using several algorithms.
发表于 2025-3-24 05:35:25 | 显示全部楼层
发表于 2025-3-24 07:41:01 | 显示全部楼层
Autoencoders,In this chapter, you will learn about autoencoder neural networks and the different types of autoencoders. You will also learn how autoencoders can be used to detect anomalies and how you can implement anomaly detection using autoencoders.
发表于 2025-3-24 13:20:08 | 显示全部楼层
发表于 2025-3-24 17:22:03 | 显示全部楼层
Temporal Convolutional Networks,In this chapter, you will learn about temporal convolutional networks (TCNs). You will also learn how TCNs work and how they can be used to detect anomalies and how you can implement anomaly detection using a TCN.
发表于 2025-3-24 20:33:50 | 显示全部楼层
Book 20191st editionin Python, the book focuses on how various deep learning models can be applied to semi-supervised and unsupervised anomaly detection tasks..This book begins with an explanation of what anomaly detection is, what it is used for, and its importance. After covering statistical and traditional machine l
发表于 2025-3-25 02:44:54 | 显示全部楼层
Covers the most contemporary approaches to anomaly detectionUtilize this easy-to-follow beginner‘s guide to understand how deep learning can be applied to the task of anomaly detection. Using Keras and PyTorch in Python, the book focuses on how various deep learning models can be applied to semi-sup
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-6 00:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表