找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bayesian Networks in R; with Applications in Radhakrishnan Nagarajan,Marco Scutari,Sophie Lèbre Book 2013 Springer Science+Business Media N

[复制链接]
楼主: 叛乱分子
发表于 2025-3-25 06:54:31 | 显示全部楼层
发表于 2025-3-25 10:58:46 | 显示全部楼层
发表于 2025-3-25 11:45:04 | 显示全部楼层
Zuzana Krivá,Angela Handlovičováyesian inference on the other hand is often a follow-up to Bayesian network learning and deals with inferring the state of a set of variables given the state of others as evidence. Such an approach eliminates the need for additional experiments and is therefore extremely helpful. In this chapter, we
发表于 2025-3-25 16:28:32 | 显示全部楼层
Piotr Kulczycki,Piotr A. Kowalskit is polynomial even for sparse networks. Even though newer algorithms are designed to improve scalability, it is unfeasible to analyze data containing more than a few hundreds of variables. Parallel computing provides a way to address this problem by making better use of modern hardware..In this ch
发表于 2025-3-25 20:07:24 | 显示全部楼层
Radhakrishnan Nagarajan,Marco Scutari,Sophie LèbreRepresents a unique combination of introduction to concepts and examples from open-source R software.Each chapter is accompanied by examples and exercises with solutions for enhanced understanding and
发表于 2025-3-26 02:39:13 | 显示全部楼层
发表于 2025-3-26 04:44:27 | 显示全部楼层
https://doi.org/10.1007/978-1-4614-6446-4Bayes; Bayesian Theory; Graph Theory; Modeling; R; Systems Biology
发表于 2025-3-26 10:29:23 | 显示全部楼层
978-1-4614-6445-7Springer Science+Business Media New York 2013
发表于 2025-3-26 14:27:38 | 显示全部楼层
发表于 2025-3-26 19:11:33 | 显示全部楼层
9楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 15:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表