找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bayesian Inference for Probabilistic Risk Assessment; A Practitioner‘s Gui Dana Kelly,Curtis Smith Book 2011 Springer-Verlag London Limited

[复制链接]
楼主: Heel-Spur
发表于 2025-3-25 06:22:32 | 显示全部楼层
发表于 2025-3-25 08:04:39 | 显示全部楼层
Bayesian Inference for Multilevel Fault Tree Models,nt (a “super-component”) and two sub-events (i.e., piece-parts). Also, we show how OpenBUGS can be used for the example models to estimate the probability of meeting a reliability goal at any level in the fault tree model.
发表于 2025-3-25 12:29:10 | 显示全部楼层
Additional Topics,prior distributions into OpenBUGS that are not included as predefined distribution choices. We close this chapter with an example of Bayesian inference for a time-dependent Markov model of pipe rupture.
发表于 2025-3-25 15:52:38 | 显示全部楼层
Paolo Becchi,Roberto Franzini Tibaldeoior distributions may be specified, including some cautions for developing an informative prior, and we introduce the concept of a Bayesian p-value for checking the predictions of the model against the observed data.
发表于 2025-3-25 22:54:08 | 显示全部楼层
发表于 2025-3-26 01:38:16 | 显示全部楼层
发表于 2025-3-26 08:06:24 | 显示全部楼层
https://doi.org/10.1007/978-1-84996-187-5Bayesian Inference; Bayesian Networks; CP6917; MCMC; Probabilistic Risk Assessment; Reliability; quality c
发表于 2025-3-26 08:29:35 | 显示全部楼层
978-1-4471-2708-6Springer-Verlag London Limited 2011
发表于 2025-3-26 14:49:01 | 显示全部楼层
Time Trends for Binomial and Poisson Data,t λ in the binomial and Poisson distribution, respectively. This introduces new unknown parameters and makes the Bayesian inference significantly more complicated mathematically. However, modern tools such as OpenBUGS make this analysis no less tractable than the single-parameter cases analyzed earlier.
发表于 2025-3-26 18:14:35 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-11 05:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表