找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bayesian Computation with R; Jim Albert Textbook 20071st edition Springer-Verlag New York 2007 Bayesian Inference.Hierarchical modeling.Ma

[复制链接]
楼主: 推翻
发表于 2025-3-26 22:56:28 | 显示全部楼层
Regression Models,el and describe algorithms to simulate from the joint distribution of regression parameters and error variance and the predictive distribution of future observations. One can judge the adequacy of the fitted model through use of the posterior predictive distribution and the inspection of the posteri
发表于 2025-3-27 04:22:31 | 显示全部楼层
Gibbs Sampling,ppose that we partition the parameter vector of interest into . components . = (.1.), where . may consist of a vector of parameters. The MCMC algorithm is implemented by sampling in turn from the . conditional posterior distributions.
发表于 2025-3-27 07:26:39 | 显示全部楼层
发表于 2025-3-27 10:05:27 | 显示全部楼层
发表于 2025-3-27 16:55:02 | 显示全部楼层
Claus Hüsselmann,Thomas Hemmannsian inference for a variance for a normal population and inference for a Poisson mean when informative prior information is available. For both problems, summarization of the posterior distribution is facilitated by the use of R functions to compute and simulate distributions from the exponential f
发表于 2025-3-27 18:51:41 | 显示全部楼层
Claus Hüsselmann,Thomas Hemmannation or multinomial parameters, posterior inference is accomplished by simulating from distributions of standard forms. Once a simulated sample is obtained from the joint posterior, it is straightforward to perform transformations on these simulated draws to learn about any function of the paramete
发表于 2025-3-28 00:23:53 | 显示全部楼层
发表于 2025-3-28 06:10:56 | 显示全部楼层
Rolf Irion,Fabian Schmidt-Schröderrior distribution, but it can be difficult to set up since it requires the construction of a suitable proposal density. Importance sampling and SIR algorithms are also general-purpose algorithms, but they also require proposal densities that may be difficult to find for high-dimensional problems. In
发表于 2025-3-28 08:17:19 | 显示全部楼层
发表于 2025-3-28 12:26:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-29 06:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表