找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bayesian Computation with R; Jim Albert Textbook 2009Latest edition Springer-Verlag New York 2009 Bayesian Inference.Hierarchical modeling

[复制链接]
楼主: 开脱
发表于 2025-3-23 10:42:13 | 显示全部楼层
发表于 2025-3-23 16:59:44 | 显示全部楼层
发表于 2025-3-23 19:36:34 | 显示全部楼层
发表于 2025-3-24 01:19:49 | 显示全部楼层
Markov Chain Monte Carlo Methods,orithms are also general-purpose algorithms, but they also require proposal densities that may be difficult to find for high-dimensional problems. In this chapter, we illustrate the use of Markov chain Monte Carlo (MCMC) algorithms in summarizing posterior distributions.
发表于 2025-3-24 05:01:47 | 显示全部楼层
Model Comparison,tation of Bayes factors in both the one-sided and two-sided settings. We then generalize to the setting where one is comparing two Bayesian models, each consisting of a choice of prior and sampling density.
发表于 2025-3-24 09:59:15 | 显示全部楼层
发表于 2025-3-24 14:01:14 | 显示全部楼层
https://doi.org/10.1007/978-981-99-4997-7rior information in a regression model. We illustrate the use of Zellner’s class of g priors to select among a set of best regression models. We conclude by illustrating the Bayesian fitting of a survival regression model.
发表于 2025-3-24 18:29:07 | 显示全部楼层
发表于 2025-3-24 19:35:18 | 显示全部楼层
发表于 2025-3-25 01:47:12 | 显示全部楼层
An Introduction to R,ple Monte Carlo study to explore the behavior of the two-sample t statistic when testing from populations that deviate from the usual assumptions. We will find these data analysis and simulation commands very helpful in Bayesian computation.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 10:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表