找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Banach Space Theory; The Basis for Linear Marián Fabian,Petr Habala,Václav Zizler Textbook 2011 Springer Science+Business Media, LLC 2011 R

[复制链接]
楼主: commingle
发表于 2025-3-28 16:02:23 | 显示全部楼层
Basics in Nonlinear Geometric Analysis,paces. We prove Keller’s theorem on homeomorphism of infinite-dimensional compact convex sets in Banach spaces to .. We also prove the Kadec theorem on the homeomorphism of every separable reflexive space to a Hilbert space. Then we prove some results on uniform, in particular Lipschitz, homeomorphisms.
发表于 2025-3-28 19:16:20 | 显示全部楼层
Weakly Compactly Generated Spaces,ctly generated spaces, in short WCG spaces). We focus on their decomposition properties, renormings, and on the topological properties of their dual spaces. We prove that WCG spaces are generated by reflexive spaces. Then we study absolutely summing operators and the Dunford–Pettis property.
发表于 2025-3-29 00:36:07 | 显示全部楼层
发表于 2025-3-29 04:37:06 | 显示全部楼层
发表于 2025-3-29 10:34:34 | 显示全部楼层
发表于 2025-3-29 12:34:58 | 显示全部楼层
发表于 2025-3-29 16:49:02 | 显示全部楼层
发表于 2025-3-29 20:56:08 | 显示全部楼层
Zur Typologie der politischen Parteienof the local theory of Banach spaces. It is a vast and deep part of Banach space theory intimately related to probability and combinatorics. Our goal is to familiarize the reader with some of its basic notions and results that are accessible without the use of deep probabilistic tools.
发表于 2025-3-30 03:04:16 | 显示全部楼层
发表于 2025-3-30 05:59:35 | 显示全部楼层
Valentin L. Popov,Markus Heß,Emanuel Willertroperty has several equivalent characterizations and applications. In particular, Asplund spaces are characterized by the Radon–Nikodým property of their dual spaces. As another application, we show that Lipschitz mappings from separable Banach spaces into Banach spaces with RNP are at some points G
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 23:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表