找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Banach Space Complexes; Cǎlin-Grigore Ambrozie,Florian-Horia Vasilescu Book 1995 Kluwer Academic Publishers 1995 Banach space.Operator the

[复制链接]
查看: 37884|回复: 35
发表于 2025-3-21 17:46:04 | 显示全部楼层 |阅读模式
期刊全称Banach Space Complexes
影响因子2023Cǎlin-Grigore Ambrozie,Florian-Horia Vasilescu
视频video
学科分类Mathematics and Its Applications
图书封面Titlebook: Banach Space Complexes;  Cǎlin-Grigore Ambrozie,Florian-Horia Vasilescu Book 1995 Kluwer Academic Publishers 1995 Banach space.Operator the
影响因子The aim of this work is to initiate a systematic study of those properties of Banach space complexes that are stable under certain perturbations. A Banach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every continuous linear operator S : X ..... Y, where X, Yare Banach spaces, may be regarded as a complex: O ..... X ~ Y ..... O. The already existing Fredholm theory for linear operators suggested the possibility to extend its concepts and methods to the study of Banach space complexes. The basic stability properties valid for (semi-) Fredholm operators have their counterparts in the more general context of Banach space complexes. We have in mind especially the stability of the index (i.e., the extended Euler characteristic) under small or compact perturbations, but other related stability results can also be successfully extended. Banach (or Hilbert) space complexes have penetrated the functional analysis from at least two apparently disjoint dire
Pindex Book 1995
The information of publication is updating

书目名称Banach Space Complexes影响因子(影响力)




书目名称Banach Space Complexes影响因子(影响力)学科排名




书目名称Banach Space Complexes网络公开度




书目名称Banach Space Complexes网络公开度学科排名




书目名称Banach Space Complexes被引频次




书目名称Banach Space Complexes被引频次学科排名




书目名称Banach Space Complexes年度引用




书目名称Banach Space Complexes年度引用学科排名




书目名称Banach Space Complexes读者反馈




书目名称Banach Space Complexes读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:12:29 | 显示全部楼层
Book 1995nach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every con
发表于 2025-3-22 00:47:05 | 显示全部楼层
发表于 2025-3-22 04:49:09 | 显示全部楼层
发表于 2025-3-22 10:08:46 | 显示全部楼层
发表于 2025-3-22 13:43:28 | 显示全部楼层
Preliminaries, are .-linear mappings between F-linear spaces is denoted by ... In particular, ... is the category of all real linear spaces with real linear mappings, and .. is the category of all complex linear spaces with complex linear mappings.
发表于 2025-3-22 20:32:10 | 显示全部楼层
https://doi.org/10.1007/978-3-531-90460-3nach space complex is essentially an object of the form .where . runs a finite or infinite interval of integers, .. are Banach space, and α. : ..→.. are continuous linear operators such that α.α. = 0 for all indices .. In particular, every continuous linear operator . : .→., where ., . are Banach sp
发表于 2025-3-23 00:07:19 | 显示全部楼层
Zur Typologie der politischen Parteien are .-linear mappings between F-linear spaces is denoted by ... In particular, ... is the category of all real linear spaces with real linear mappings, and .. is the category of all complex linear spaces with complex linear mappings.
发表于 2025-3-23 02:21:47 | 显示全部楼层
发表于 2025-3-23 09:06:56 | 显示全部楼层
978-94-010-4168-3Kluwer Academic Publishers 1995
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 00:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表