找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ball and Surface Arithmetics; Rolf-Peter Holzapfel Textbook 1998 Springer Fachmedien Wiesbaden 1998 algebra.algorithms.classification.fiel

[复制链接]
楼主: DUMMY
发表于 2025-3-23 10:12:01 | 显示全部楼层
Orbital Surfaces,We work in the category of all compact complex normal algebraic surfaces with (at most) singularities of . type. A . on such a surface . is a formal sum ., where . = (., .; ...) is a (smooth) orbital curve on . and .. is an (arranged) abelian point on ., . = 1,...,., . = 1,..., .. The following axioms have to be satisfied:
发表于 2025-3-23 13:51:12 | 显示全部楼层
发表于 2025-3-23 21:33:04 | 显示全部楼层
Aspects of Mathematicshttp://image.papertrans.cn/b/image/180490.jpg
发表于 2025-3-24 00:01:31 | 显示全部楼层
发表于 2025-3-24 06:26:48 | 显示全部楼层
Handbuch der Laplace-Transformation 2. Its group of biholomorphic automorphisms is the projective group ℙ.((2,1), ℂ) = ℙ.((2,1), ℂ) acting on ? by fractional linear transformations. With obvious notations the corresponding (special) unitary group is defined by ..
发表于 2025-3-24 08:32:20 | 显示全部楼层
Allgemeine Betrachtungen über Asymptotikalgebraic surface and has only cyclic singularities on .. Furthermore, we can assume that for any cyclic singularity . ∈ . there exists a smooth curve germ . on . through . such that (., .; ., .) is a reduced abelian point. A . along . is a pair (., .), . ≠ 0 a natural number. We say that the abelia
发表于 2025-3-24 14:41:16 | 显示全部楼层
发表于 2025-3-24 17:06:33 | 显示全部楼层
发表于 2025-3-24 22:21:06 | 显示全部楼层
Partielle Differenzengleichungenxtend the notion of orbital surfaces. In the Galois theory orbital surfaces, orbital curves and points can be expressed by means of divisors and singularities. These are quite classical objects. The classical language does not work nicely in the general theory of surface coverings. Here we have to i
发表于 2025-3-25 00:19:54 | 显示全部楼层
Ball Quotient Surfaces, 2. Its group of biholomorphic automorphisms is the projective group ℙ.((2,1), ℂ) = ℙ.((2,1), ℂ) acting on ? by fractional linear transformations. With obvious notations the corresponding (special) unitary group is defined by ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 06:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表