找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Baer *-Rings; Sterling K. Berberian Book 1972 Springer-Verlag Berlin Heidelberg 1972 16P60, 16W10, 46L10.Algebra.Baer *-rings.algebra.matr

[复制链接]
楼主: Malinger
发表于 2025-3-23 10:53:43 | 显示全部楼层
发表于 2025-3-23 17:49:24 | 显示全部楼层
发表于 2025-3-23 21:13:07 | 显示全部楼层
Baer *-Rings978-3-642-15071-5Series ISSN 0072-7830 Series E-ISSN 2196-9701
发表于 2025-3-23 23:37:06 | 显示全部楼层
https://doi.org/10.1007/978-3-476-05479-1llowing definition:. A ∗-. (or .) is a ring with an involution .↦.: . When . is also an algebra, over a field with involution .↦. (the identity involution is allowed), we assume further that . and call . a ∗-. {The complex ∗-algebras are especially important special cases, but the main emphasis of the book is actually on ∗-rings.}
发表于 2025-3-24 06:07:31 | 显示全部楼层
发表于 2025-3-24 10:07:54 | 显示全部楼层
https://doi.org/10.1007/978-3-322-96347-5of . require different techniques and are treated separately. A salient feature of the exposition is that virtually all results are obtained without assuming the parallelogram law (P); it is only in the final section on modularity (Section 34) that (P) is invoked.
发表于 2025-3-24 12:10:23 | 显示全部楼层
发表于 2025-3-24 15:06:35 | 显示全部楼层
Managementrolle: AlleinentscheiderThe dominant theme of this book is the interplay, in a ∗-ring ., between the ring structure and the set . of projections of .. For the ring structure, the ideals of . are subsets of central importance; how may the corresponding subsets of . be characterized? This is the ques- tion treated in the present section.
发表于 2025-3-24 22:11:51 | 显示全部楼层
发表于 2025-3-25 01:42:35 | 显示全部楼层
https://doi.org/10.1007/978-3-663-01557-4The present chapter is based on (Berberian, .).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-28 01:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表