期刊全称 | Background Processes in the Electrostatic Spectrometers of the KATRIN Experiment | 影响因子2023 | Susanne Mertens | 视频video | | 发行地址 | Nominated as an outstanding Ph.D. thesis by the Karlsruhe Institute of Technology, Germany.Outlines how to measure the fundamental neutrino mass scale by means of high-precision ß-spectroscopy.Gives a | 学科分类 | Springer Theses | 图书封面 |  | 影响因子 | Neutrinos continue to be the most mysterious and, arguably, the most fascinating particles of the Standard Model as their intrinsic properties such as absolute mass scale and CP properties are unknown. The open question of the absolute neutrino mass scale will be addressed with unprecedented accuracy by the Karlsruhe Tritium Neutrino (KATRIN) experiment, currently under construction. This thesis focusses on the spectrometer part of KATRIN and background processes therein. Various background sources such as small Penning traps, as well as nuclear decays from single radon atoms are fully characterized here for the first time. Most importantly, however, it was possible to reduce the background in the spectrometer by more than five orders of magnitude by eliminating Penning traps and by developing a completely new background reduction method by stochastically heating trapped electrons using electron cyclotron resonance (ECR). The work beautifully demonstrates that the obstacles and challenges in measuring the absolute mass scale of neutrinos can be met successfully if novel experimental tools (ECR) and novel computing methods (KASSIOPEIA) are combined to allow almost background-free | Pindex | Book 2014 |
The information of publication is updating
|
|