找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks in Pattern Recognition; 11th IAPR TC3 Worksh Ching Yee Suen,Adam Krzyzak,Nicola Nobile Conference proceedings 20

[复制链接]
楼主: corrode
发表于 2025-3-26 23:44:07 | 显示全部楼层
发表于 2025-3-27 02:13:44 | 显示全部楼层
发表于 2025-3-27 08:36:28 | 显示全部楼层
Machine Learning for Clinical Score Prediction from Longitudinal Dataset: A Case Study on Parkinson’achine learning approach to predict the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) Part III scores, quantifying motor symptom progression in PD patients. Using the longitudinal Parkinson’s Progression Markers Initiative (PPMI) dataset, we examined the impact of da
发表于 2025-3-27 11:03:01 | 显示全部楼层
发表于 2025-3-27 14:24:17 | 显示全部楼层
Multi-modal Decoding of Reach-to-Grasping from EEG and EMG via Neural Networksform traditional machine learning, especially for Brain-Computer Interface (BCI) applications. By processing also other recording modalities (e.g., electromyography, EMG) together with EEG signals, motor decoding improved. However, multi-modal algorithms for decoding hand movements are mainly applie
发表于 2025-3-27 19:10:42 | 显示全部楼层
VAeViT: Fusing Multi-views for Complete 3D Object Recognitionhallenges. To bridge this gap, we introduce VAeViT, a pioneering hybrid model that seamlessly integrates the strengths of Vision Transformers and Variational Autoencoders (VAE). VAeViT leverages VAE’s efficiency in feature representation to encode the 3D object views into a lower-dimensional latent
发表于 2025-3-27 22:14:39 | 显示全部楼层
发表于 2025-3-28 05:04:45 | 显示全部楼层
发表于 2025-3-28 07:12:12 | 显示全部楼层
发表于 2025-3-28 10:58:11 | 显示全部楼层
Executive Women and Glass Ceiling in China,ly determined while estimating the parameters. Our suggested approach is utilized in medical settings, specifically to focus medication for individuals with heart disease based on clinical data and analyze breast tissue taking into account histological scans. When it comes to data with strictly boun
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 08:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表