找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: AI for Health Equity and Fairness; Leveraging AI to Add Arash Shaban-Nejad,Martin Michalowski,Simone Bianc Book 2024 The Editor(s) (if appl

[复制链接]
楼主: INEPT
发表于 2025-3-28 17:48:13 | 显示全部楼层
Arash Shaban-Nejad,Martin Michalowski,Simone BiancHighlights the latest achievements in the use of AI in improving healthy equity.Includes revised versions of selected papers presented at the 2024 AAAI Workshop on Health Intelligence.Interconnects th
发表于 2025-3-28 20:33:06 | 显示全部楼层
发表于 2025-3-29 00:07:24 | 显示全部楼层
AI for Health Equity and Fairness978-3-031-63592-2Series ISSN 1860-949X Series E-ISSN 1860-9503
发表于 2025-3-29 06:19:12 | 显示全部楼层
发表于 2025-3-29 07:29:50 | 显示全部楼层
发表于 2025-3-29 12:34:59 | 显示全部楼层
,Navigating the Synthetic Realm: Harnessing Diffusion-Based Models for Laparoscopic Text-to-Image GeA validation study with a human assessment survey underlines the realistic nature of our synthetic data, as medical personnel detects actual images in a pool with generated images causing a false-positive rate of 66%. In addition, the investigation of a state-of-the-art machine learning model to rec
发表于 2025-3-29 16:15:23 | 显示全部楼层
发表于 2025-3-29 19:47:15 | 显示全部楼层
,Using Large Language Models for Generating Smart Contracts for Health Insurance from Textual Policisess the LLM output, we propose ., ., ., ., and . as metrics. Our evaluation employs three health insurance policies (.) with increasing difficulty from Medicare’s official booklet. Our evaluation uses GPT-3.5 Turbo, GPT-3.5 Turbo 16K, GPT-4, GPT-4 Turbo and CodeLLaMA. Our findings confirm that LLMs
发表于 2025-3-30 00:42:51 | 显示全部楼层
Can GPT Improve the State of Prior Authorization Via Guideline Based Automated Question Answering?,s introduce our own novel prompting technique. Moreover, we report qualitative assessment by humans on the natural language generation outputs from our approach. Results show that our method achieves superior performance with the mean weighted F1 score of 0.61 as compared to its standard counterpart
发表于 2025-3-30 04:53:59 | 显示全部楼层
Knowledge-Grounded Medical Dialogue Generation,n effectiveness. First, we build a knowledge bank of recorded patient-provider genetic counseling sessions and leverage an open-source LLM to extract and summarize relevant information. We leverage this knowledge bank to develop a retrieval-augmented system for answering patient questions. We find t
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 14:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表