找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Automorphic Forms, Representation Theory and Arithmetic; Papers presented at Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap Conference

[复制链接]
楼主: necrosis
发表于 2025-3-23 10:11:01 | 显示全部楼层
发表于 2025-3-23 16:03:06 | 显示全部楼层
发表于 2025-3-23 19:17:29 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-6683-4G. Shimura has shown how to attach to each holomorphic cusp form of half-integral weight a modular form of even integral weight. More precisely, suppose f(z) is a cusp form of weight k/2, level N, and character χ.
发表于 2025-3-23 22:54:18 | 显示全部楼层
The Transport of Acid PollutionOur starting point is a very general question. Let Γ be an arithmetic subgroup of a reductive Lie group G.. Then the group T acts on the symmetric space X = G./K. where K. ⊂ G. is a maximal compact subgroup.
发表于 2025-3-24 03:46:34 | 显示全部楼层
发表于 2025-3-24 08:18:30 | 显示全部楼层
Strategies for Reducing Acid RainSuppose . is a modular cusp form with Fourier expansion:
发表于 2025-3-24 14:11:38 | 显示全部楼层
,On Shimura’s Correspondence for Modular Forms of Half-Integral Weight,G. Shimura has shown how to attach to each holomorphic cusp form of half-integral weight a modular form of even integral weight. More precisely, suppose f(z) is a cusp form of weight k/2, level N, and character χ.
发表于 2025-3-24 14:54:30 | 显示全部楼层
发表于 2025-3-24 19:37:33 | 显示全部楼层
,On P-ADIC Representations Associated with ℤp -Extensions,. paper, we shall discuss some results on the p-adic representations of Galois groups, associated with so-called cyclotomic ℤ.-extensions of finite algebraic number fields.
发表于 2025-3-25 01:19:27 | 显示全部楼层
Dirichlet Series for the Group GL(N),Suppose . is a modular cusp form with Fourier expansion:
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 23:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表