找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Automatic Tuning of Compilers Using Machine Learning; Amir H. Ashouri,Gianluca Palermo,Cristina Silvano Book 2018 The Author(s) 2018 Embed

[复制链接]
查看: 40887|回复: 36
发表于 2025-3-21 18:51:04 | 显示全部楼层 |阅读模式
期刊全称Automatic Tuning of Compilers Using Machine Learning
影响因子2023Amir H. Ashouri,Gianluca Palermo,Cristina Silvano
视频video
发行地址Includes supplementary material:
学科分类SpringerBriefs in Applied Sciences and Technology
图书封面Titlebook: Automatic Tuning of Compilers Using Machine Learning;  Amir H. Ashouri,Gianluca Palermo,Cristina Silvano Book 2018 The Author(s) 2018 Embed
影响因子.This book explores break-through approaches to tackling and mitigating the well-known problems of compiler optimization using design space exploration and machine learning techniques. It demonstrates that not all the optimization passes are suitable for use within an optimization sequence and that, in fact, many of the available passes tend to counteract one another. After providing a comprehensive survey of currently available methodologies, including many experimental comparisons with state-of-the-art compiler frameworks, the book describes new approaches to solving the problem of selecting the best compiler optimizations and the phase-ordering problem, allowing readers to overcome the enormous complexity of choosing the right order of optimizations for each code segment in an application. As such, the book offers a valuable resource for a broad readership, including researchers interested in Computer Architecture, Electronic Design Automation and Machine Learning, as well as computer architects and compiler developers..
Pindex Book 2018
The information of publication is updating

书目名称Automatic Tuning of Compilers Using Machine Learning影响因子(影响力)




书目名称Automatic Tuning of Compilers Using Machine Learning影响因子(影响力)学科排名




书目名称Automatic Tuning of Compilers Using Machine Learning网络公开度




书目名称Automatic Tuning of Compilers Using Machine Learning网络公开度学科排名




书目名称Automatic Tuning of Compilers Using Machine Learning被引频次




书目名称Automatic Tuning of Compilers Using Machine Learning被引频次学科排名




书目名称Automatic Tuning of Compilers Using Machine Learning年度引用




书目名称Automatic Tuning of Compilers Using Machine Learning年度引用学科排名




书目名称Automatic Tuning of Compilers Using Machine Learning读者反馈




书目名称Automatic Tuning of Compilers Using Machine Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:11:43 | 显示全部楼层
Design Space Exploration of Compiler Passes: A Co-Exploration Approach for the Embedded Domain,duced hardware complexity. However, they impose higher compiler complexity since the instructions are executed in parallel based on the static compiler schedule. Therefore, finding a promising set of compiler transformations and defining their effects have a significant impact on the overall system
发表于 2025-3-22 03:29:24 | 显示全部楼层
Selecting the Best Compiler Optimizations: A Bayesian Network Approach,best compiler passes. It leverages machine learning and an application characterization to find the most promising optimization passes given an application. This chapter proposes .: Compiler autotuning framework using Bayesian Networks. An autotuning methodology based on machine learning to speed up
发表于 2025-3-22 06:04:29 | 显示全部楼层
The Phase-Ordering Problem: An Intermediate Speedup Prediction Approach,p prediction approach followed by a full-sequence prediction approach in the next chapter and we show pros and cons of each approach in detail. Today’s compilers offer a vast number of transformation options to choose among, and this choice can significantly impact on the performance of the code bei
发表于 2025-3-22 09:18:02 | 显示全部楼层
The Phase-Ordering Problem: A Complete Sequence Prediction Approach,.. Here, we present our full-sequence speedup prediction method called MiCOMP.MiCOMP: .tigating the .piler .hase-ordering problem using optimization sub-sequences and machine learning, is an autotuning framework to mitigate the compiler phase-ordering problem based on machine-learning techniques eff
发表于 2025-3-22 15:18:01 | 显示全部楼层
发表于 2025-3-22 20:10:56 | 显示全部楼层
发表于 2025-3-23 00:18:58 | 显示全部楼层
发表于 2025-3-23 02:34:35 | 显示全部楼层
发表于 2025-3-23 05:31:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 15:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表