找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Auto-Grader - Auto-Grading Free Text Answers; Robin Richner Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[复制链接]
查看: 18341|回复: 43
发表于 2025-3-21 17:02:27 | 显示全部楼层 |阅读模式
期刊全称Auto-Grader - Auto-Grading Free Text Answers
影响因子2023Robin Richner
视频video
学科分类BestMasters
图书封面Titlebook: Auto-Grader - Auto-Grading Free Text Answers;  Robin Richner Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive lic
影响因子Teachers spend a great amount of time grading free text answer type questions. To encounter this challenge an auto-grader system is proposed. The thesis illustrates that the auto-grader can be approached with simple, recurrent, and Transformer-based neural networks. Hereby, the Transformer-based models has the best performance. It is further demonstrated that geometric representation of question-answer pairs is a worthwhile strategy for an auto-grader. Finally, it is indicated that while the auto-grader could potentially assist teachers in saving time with grading, it is not yet on a level to fully replace teachers for this task.
Pindex Book 2022
The information of publication is updating

书目名称Auto-Grader - Auto-Grading Free Text Answers影响因子(影响力)




书目名称Auto-Grader - Auto-Grading Free Text Answers影响因子(影响力)学科排名




书目名称Auto-Grader - Auto-Grading Free Text Answers网络公开度




书目名称Auto-Grader - Auto-Grading Free Text Answers网络公开度学科排名




书目名称Auto-Grader - Auto-Grading Free Text Answers被引频次




书目名称Auto-Grader - Auto-Grading Free Text Answers被引频次学科排名




书目名称Auto-Grader - Auto-Grading Free Text Answers年度引用




书目名称Auto-Grader - Auto-Grading Free Text Answers年度引用学科排名




书目名称Auto-Grader - Auto-Grading Free Text Answers读者反馈




书目名称Auto-Grader - Auto-Grading Free Text Answers读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:58:24 | 显示全部楼层
发表于 2025-3-22 03:32:00 | 显示全部楼层
https://doi.org/10.1007/978-3-531-94266-7th the two best-performing models which will be referred to as “tuned 1”. This is followed by another hyperparameter tuning iteration. The new optimal hyperparameters are then utilized again for another training on all data for the previously stated two best-performing models referred to as “tuned 2”.
发表于 2025-3-22 08:30:36 | 显示全部楼层
Evaluation,th the two best-performing models which will be referred to as “tuned 1”. This is followed by another hyperparameter tuning iteration. The new optimal hyperparameters are then utilized again for another training on all data for the previously stated two best-performing models referred to as “tuned 2”.
发表于 2025-3-22 12:29:23 | 显示全部楼层
发表于 2025-3-22 13:06:59 | 显示全部楼层
发表于 2025-3-22 17:29:39 | 显示全部楼层
发表于 2025-3-23 00:28:14 | 显示全部楼层
发表于 2025-3-23 01:59:41 | 显示全部楼层
发表于 2025-3-23 08:21:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 03:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表