找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Atiyah-Singer Index Theorem - An Introduction; An Introduction Amiya Mukherjee Book 2013 Hindustan Book Agency 2013

[复制链接]
楼主: 专家
发表于 2025-3-23 09:46:21 | 显示全部楼层
https://doi.org/10.1007/978-3-540-93931-3odicity theorem which can be obtained using equivariant Toeplitz operators just as in the non-equivariant case. Our previous method also leads to equivariant Thorn isomorphism theorem when . is a commutative Lie group. Lastly we prove the localization theorem.
发表于 2025-3-23 14:44:16 | 显示全部楼层
发表于 2025-3-23 19:13:52 | 显示全部楼层
发表于 2025-3-23 23:51:56 | 显示全部楼层
https://doi.org/10.1057/9781137029621his is approach is different from that considered in Atiyah and Bott [.]. The formulation of the proof of the Bott periodicity theorem presented here fits into the axiomatic treatment as given in Atiyah [.].
发表于 2025-3-24 05:58:11 | 显示全部楼层
发表于 2025-3-24 07:01:22 | 显示全部楼层
发表于 2025-3-24 12:25:19 | 显示全部楼层
发表于 2025-3-24 15:53:05 | 显示全部楼层
发表于 2025-3-24 20:52:55 | 显示全部楼层
发表于 2025-3-25 02:50:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 16:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表