找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Asymptotic Optimal Inference for Non-ergodic Models; Ishwar V. Basawa,David John Scott Book 1983 Springer-Verlag New York Inc. 1983 Branch

[复制链接]
楼主: proptosis
发表于 2025-3-25 07:09:53 | 显示全部楼层
发表于 2025-3-25 11:25:55 | 显示全部楼层
发表于 2025-3-25 15:27:15 | 显示全部楼层
Charles E. Burkhardt,Jacob J. Leventhalse models of non-ergodic type (see §2 for definitions), and results on efficiency of estimators and tests will be discussed using a unified approach. Our aim in this chapter is to present the main ideas and general asymptotic results in an informal manner. More detailed treatment of specific problems discussed here is given in subsequent chapters.
发表于 2025-3-25 15:52:57 | 显示全部楼层
https://doi.org/10.1007/978-1-4615-6205-4f a general non-ergodic model defined in terras of the non-local asymptotic behaviour of the log-likelihood ratio and discuss various applications. Also, extensions of Bahadur efficiency concepts to such models will be briefly indicated.
发表于 2025-3-25 20:56:19 | 显示全部楼层
发表于 2025-3-26 03:16:21 | 显示全部楼层
发表于 2025-3-26 04:24:16 | 显示全部楼层
发表于 2025-3-26 09:58:50 | 显示全部楼层
Efficiency of Estimation,timators, there is an upper bound for the asymptotic concentration, such that the set of parameter values on which any particular estimator has higher concentration is of Lebesgue measure zero. The restriction placed on the class of competing estimators in order to assert the validity of the upper b
发表于 2025-3-26 13:03:09 | 显示全部楼层
发表于 2025-3-26 20:42:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 06:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表