找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Asymptotic Geometric Analysis; Proceedings of the F Monika Ludwig,Vitali D. Milman,Nicole Tomczak-Jaeg Conference proceedings 2013 Springer

[复制链接]
楼主: gloomy
发表于 2025-3-28 15:25:55 | 显示全部楼层
发表于 2025-3-28 20:48:29 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-0548-2the notion of injectivity. We show that distal non-equicontinuous systems do not admit any .-compatible compactification. We present several new examples of non-injective dynamical systems and examine the relationship between injectivity and .-compatibility.
发表于 2025-3-29 00:07:19 | 显示全部楼层
发表于 2025-3-29 05:03:11 | 显示全部楼层
发表于 2025-3-29 07:26:39 | 显示全部楼层
Euclidean Sections of Convex Bodies,r allowing us to include it here. There is also a better version of the proof of one of the results from Schechtman (Adv. Math. .(1), 125–135, 2006) giving a lower bound on the dependence on .in Dvoretzky’s theorem. The improvement is in the statement and proof of Proposition 2 here which is a stron
发表于 2025-3-29 13:09:01 | 显示全部楼层
1069-5265 ty theory.These directions are represented in this volume and reflect the present state of this important area of research. It will be of benefit to researchers working in a wide range of mathematical sciences—978-1-4899-9331-1978-1-4614-6406-8Series ISSN 1069-5265 Series E-ISSN 2194-1564
发表于 2025-3-29 16:36:02 | 显示全部楼层
Conference proceedings 2013especially with the asymptotics of their various quantitative parameters as the dimension tends to infinity. The deep geometric, probabilistic, and combinatorial methods developed here are used outside the field in many areas of mathematics and mathematical sciences. The Fields Institute Thematic Pr
发表于 2025-3-29 20:03:41 | 显示全部楼层
发表于 2025-3-30 01:13:53 | 显示全部楼层
Operator Functional Equations in Analysis,ss recent results of this type in analysis. The operations we consider act on classical spaces like ..-spaces or Schwartz spaces .. Naturally, the results strongly depend on the type of the domain and the image space.
发表于 2025-3-30 07:22:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 06:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表