找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Asymptotic Analysis of Unstable Solutions of Stochastic Differential Equations; Grigorij Kulinich,Svitlana Kushnirenko,Yuliya Mish Book 20

[复制链接]
楼主: 存货清单
发表于 2025-3-25 06:58:46 | 显示全部楼层
https://doi.org/10.1007/978-3-030-41291-3Stochastic differential equation; Asymptotic behavior of solution; Nonregular dependence on parameter;
发表于 2025-3-25 10:26:23 | 显示全部楼层
发表于 2025-3-25 15:19:35 | 显示全部楼层
发表于 2025-3-25 17:19:47 | 显示全部楼层
发表于 2025-3-25 22:08:30 | 显示全部楼层
发表于 2025-3-26 00:39:39 | 显示全部楼层
发表于 2025-3-26 07:34:46 | 显示全部楼层
,Asymptotic Behavior of Homogeneous Additive Functionals Defined on the Solutions of Itô SDEs with Ndevoted to asymptotic behavior of the integral functionals of martingale type. The explicit form of the limiting processes for ..(.) is established in Sect. 5.6 under very non-regular dependence of .. and .. on the parameter .. This section summarizes the main results and their proofs. Section 5.7 c
发表于 2025-3-26 09:46:18 | 显示全部楼层
Convergence of Unstable Solutions of SDEs to Homogeneous Markov Processes with Discontinuous Transiefficients of the equations leading to instability of the solutions are established in Sect. 2.1. Necessary and sufficient conditions for the weak convergence of the stochastically unstable solutions to a Brownian motion in two-layer environment are formulated and proved in Sect. 2.2. Necessary and
发表于 2025-3-26 14:07:25 | 显示全部楼层
Asymptotic Analysis of Equations with Ergodic and Stochastically Unstable Solutions,een equations whose solutions have ergodic distribution, and equations with stochastically unstable solutions. To simplify calculations and to visualize better the influence of the drift coefficient of the equation on the asymptotic behavior of solution, we consider Eq. (.) with .. Statements about
发表于 2025-3-26 16:49:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-26 19:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表