找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Associative and Non-Associative Algebras and Applications; 3rd MAMAA, Chefchaou Mercedes Siles Molina,Laiachi El Kaoutit,Mohamed B Conferen

[复制链接]
楼主: Deflated
发表于 2025-3-28 18:09:39 | 显示全部楼层
发表于 2025-3-28 19:26:59 | 显示全部楼层
发表于 2025-3-29 01:11:25 | 显示全部楼层
Semi-ring Based Gröbner–Shirshov Bases over a Noetherian Valuation Ringing rather in a monoid. In this paper, we study Gröbner–Shirshov bases where the monomials are in a semi-ring and the coefficients are in a noetherian valuation ring and we establish the relation between weak and strong Gröbner bases.
发表于 2025-3-29 06:49:36 | 显示全部楼层
Conference proceedings 2020ouen, Morocco, April 12-14, 2018, and which reflects the mathematical collaboration between south European and north African countries, mainly France, Spain, Morocco, Tunisia and Senegal. The book is divided in three parts and features contributions from the following fields: algebraic and analytic
发表于 2025-3-29 08:06:04 | 显示全部楼层
发表于 2025-3-29 14:29:18 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-3184-2 the automorphisms having the property of extension, in the category of abelian groups. Let . be an integral bounded factorization domain and . a direct sum of cyclic torsion-free modules over .. This work aims to prove that the automorphisms of . that satisfy the property of the extension are none other than the homotheties of invertible ratio.
发表于 2025-3-29 16:44:38 | 显示全部楼层
The Extension Property in the Category of Direct Sum of Cyclic Torsion-Free Modules over a BFD the automorphisms having the property of extension, in the category of abelian groups. Let . be an integral bounded factorization domain and . a direct sum of cyclic torsion-free modules over .. This work aims to prove that the automorphisms of . that satisfy the property of the extension are none other than the homotheties of invertible ratio.
发表于 2025-3-29 21:19:19 | 显示全部楼层
发表于 2025-3-30 00:39:52 | 显示全部楼层
发表于 2025-3-30 05:45:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 19:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表