找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks - ICANN 2010; 20th International C Konstantinos Diamantaras,Wlodek Duch,Lazaros S. Il Conference proceedings 201

[复制链接]
楼主: Reagan
发表于 2025-3-30 11:31:49 | 显示全部楼层
Analyzing Classification Methods in Multi-label Tasksnnotation of images. This paper presents a comparative analysis of some existing multi-label classification methods applied to different domains. The main aim of this analysis is to evaluate the performance of such methods in different tasks and using different evaluation metrics.
发表于 2025-3-30 14:27:28 | 显示全部楼层
Fiber Parameter Studies with the OTDRs has been done, but with cost functions that scale quadratically. Training a bottleneck classifier scales linearly, but still gives results comparable to or sometimes better than two earlier supervised methods.
发表于 2025-3-30 18:00:19 | 显示全部楼层
J. J. Mecholsky,S. W. Freiman,S. M. Moreyexpression microarray datasets of different kinds of cancer. A comparative study with other classifiers such as Support Vector Machine (SVM), C4.5, naïve Bayes and k-Nearest Neighbor is performed. Our approach shows excellent results outperforming all other classifiers.
发表于 2025-3-31 00:02:37 | 显示全部楼层
https://doi.org/10.1007/978-3-662-52764-1The quality of the predictor is tested on a large test set of eye movement data and compared with the performance of two state-of-the-art saliency models on this data set. The proposed model demonstrates significant improvement – mean ROC score of 0.665 – over the selected baseline models with ROC scores of 0.625 and 0.635.
发表于 2025-3-31 01:14:53 | 显示全部楼层
发表于 2025-3-31 05:10:42 | 显示全部楼层
发表于 2025-3-31 11:39:37 | 显示全部楼层
发表于 2025-3-31 14:21:09 | 显示全部楼层
Deep Bottleneck Classifiers in Supervised Dimension Reductions has been done, but with cost functions that scale quadratically. Training a bottleneck classifier scales linearly, but still gives results comparable to or sometimes better than two earlier supervised methods.
发表于 2025-3-31 19:15:53 | 显示全部楼层
Local Modeling Classifier for Microarray Gene-Expression Dataexpression microarray datasets of different kinds of cancer. A comparative study with other classifiers such as Support Vector Machine (SVM), C4.5, naïve Bayes and k-Nearest Neighbor is performed. Our approach shows excellent results outperforming all other classifiers.
发表于 2025-4-1 00:19:43 | 显示全部楼层
A Learned Saliency Predictor for Dynamic Natural ScenesThe quality of the predictor is tested on a large test set of eye movement data and compared with the performance of two state-of-the-art saliency models on this data set. The proposed model demonstrates significant improvement – mean ROC score of 0.665 – over the selected baseline models with ROC scores of 0.625 and 0.635.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 17:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表