找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks - ICANN 2006; 16th International C Stefanos D. Kollias,Andreas Stafylopatis,Erkki Oja Conference proceedings 200

[复制链接]
楼主: 变成小松鼠
发表于 2025-4-1 02:37:31 | 显示全部楼层
发表于 2025-4-1 10:01:27 | 显示全部楼层
发表于 2025-4-1 12:07:49 | 显示全部楼层
Building Ensembles of Neural Networks with Class-Switchingon of the training data. The perturbation consists in switching the class labels of a subset of training examples selected at random. Experiments on several UCI and synthetic datasets show that these class-switching ensembles can obtain improvements in classification performance over both individual networks and bagging ensembles.
发表于 2025-4-1 18:23:57 | 显示全部楼层
发表于 2025-4-1 20:37:28 | 显示全部楼层
Jan Augustin,Gert Middelhoff,W. Virgil Brown, even fast variable selection methods lead to high computational load. However, spectra are generally smooth and can therefore be accurately approximated by splines. In this paper, we propose to use a B-spline expansion as a pre-processing step before variable selection, in which original variables
发表于 2025-4-2 02:38:58 | 显示全部楼层
发表于 2025-4-2 05:17:46 | 显示全部楼层
https://doi.org/10.1007/978-3-642-66302-4ancy filter using mutual information between regression and target variables. We introduce permutation tests to find statistically significant relevant and redundant features. Second, a wrapper searches for good candidate feature subsets by taking the regression model into account. The advantage of
发表于 2025-4-2 08:26:02 | 显示全部楼层
Günther Dietze,Hans-Ulrich Häringparameters coming from irrelevant or redundant variables are eliminated. Information theory provides a robust theoretical framework for performing input variable selection thanks to the concept of mutual information. Nevertheless, for continuous variables, it is usually a more difficult task to dete
发表于 2025-4-2 12:29:01 | 显示全部楼层
发表于 2025-4-2 16:37:16 | 显示全部楼层
Molecular Biology Intelligence Unitic plasticity and changes in the network structure. Event driven computation optimizes processing speed in order to simulate networks with large number of neurons. The training procedure is applied to the face recognition task. Preliminary experiments on a public available face image dataset show th
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 13:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表