找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks in Pattern Recognition; Second IAPR Workshop Friedhelm Schwenker,Simone Marinai Conference proceedings 2006 Spri

[复制链接]
查看: 25585|回复: 65
发表于 2025-3-21 16:10:04 | 显示全部楼层 |阅读模式
期刊全称Artificial Neural Networks in Pattern Recognition
期刊简称Second IAPR Workshop
影响因子2023Friedhelm Schwenker,Simone Marinai
视频video
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Artificial Neural Networks in Pattern Recognition; Second IAPR Workshop Friedhelm Schwenker,Simone Marinai Conference proceedings 2006 Spri
Pindex Conference proceedings 2006
The information of publication is updating

书目名称Artificial Neural Networks in Pattern Recognition影响因子(影响力)




书目名称Artificial Neural Networks in Pattern Recognition影响因子(影响力)学科排名




书目名称Artificial Neural Networks in Pattern Recognition网络公开度




书目名称Artificial Neural Networks in Pattern Recognition网络公开度学科排名




书目名称Artificial Neural Networks in Pattern Recognition被引频次




书目名称Artificial Neural Networks in Pattern Recognition被引频次学科排名




书目名称Artificial Neural Networks in Pattern Recognition年度引用




书目名称Artificial Neural Networks in Pattern Recognition年度引用学科排名




书目名称Artificial Neural Networks in Pattern Recognition读者反馈




书目名称Artificial Neural Networks in Pattern Recognition读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:54:44 | 显示全部楼层
Comparison Between Two Spatio-Temporal Organization Maps for Speech Recognitionbased on Self-Organizing Map (SOM) yielding to a Spatio-Temporel Organization Map (STOM). More precisely, the map is trained using two different spatio-temporal algorithms taking their roots in biological researches: The ST-Kohonen and the Time-Organized Map (TOM). These algorithms use two kinds of
发表于 2025-3-22 02:08:34 | 显示全部楼层
发表于 2025-3-22 07:51:39 | 显示全部楼层
Supervised Batch Neural Gasto learn a (possibly fuzzy) supervised classification. Here we propose a batch version for supervised neural gas training which allows to efficiently learn a prototype-based classification, provided training data are given beforehand. The method relies on a simpler cost function than online supervis
发表于 2025-3-22 08:45:42 | 显示全部楼层
发表于 2025-3-22 13:55:16 | 显示全部楼层
发表于 2025-3-22 17:31:59 | 显示全部楼层
A Study of the Robustness of KNN Classifiers Trained Using Soft Labelsing classes exist. In this work we attempt to compare between learning using soft and hard labels to train K-nearest neighbor classifiers. We propose a new technique to generate soft labels based on fuzzy-clustering of the data and fuzzy relabelling of cluster prototypes. Experiments were conducted
发表于 2025-3-22 22:28:49 | 显示全部楼层
发表于 2025-3-23 04:56:20 | 显示全部楼层
A Local Tangent Space Alignment Based Transductive Classification Algorithmnal coordinates of high-dimensional data, and can also reconstruct high dimensional coordinates from embedding coordinates. But it ignores the label information conveyed by data samples, and can not be used for classification directly. In this paper, a transductive manifold classification method, ca
发表于 2025-3-23 08:14:10 | 显示全部楼层
Incremental Manifold Learning Via Tangent Space Alignment to extract the intrinsic characteristic of different type of high-dimensional data by performing nonlinear dimensionality reduction. Most of them operate in a “batch” mode and cannot be efficiently applied when data are collected sequentially. In this paper, we proposed an incremental version (ILTS
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 01:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表