找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks in Pattern Recognition; 9th IAPR TC3 Worksho Frank-Peter Schilling,Thilo Stadelmann Conference proceedings 2020

[复制链接]
查看: 51306|回复: 53
发表于 2025-3-21 17:04:01 | 显示全部楼层 |阅读模式
期刊全称Artificial Neural Networks in Pattern Recognition
期刊简称9th IAPR TC3 Worksho
影响因子2023Frank-Peter Schilling,Thilo Stadelmann
视频video
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Artificial Neural Networks in Pattern Recognition; 9th IAPR TC3 Worksho Frank-Peter Schilling,Thilo Stadelmann Conference proceedings 2020
影响因子.This book constitutes the refereed proceedings of the 9th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2020, held in Winterthur, Switzerland, in September 2020. The conference was held virtually due to the COVID-19 pandemic.. The 22 revised full papers presented were carefully reviewed and selected from 34 submissions. The papers present and discuss the latest research in all areas of neural network-and machine learning-based pattern recognition. They are organized in two sections: learning algorithms and architectures, and applications..
Pindex Conference proceedings 2020
The information of publication is updating

书目名称Artificial Neural Networks in Pattern Recognition影响因子(影响力)




书目名称Artificial Neural Networks in Pattern Recognition影响因子(影响力)学科排名




书目名称Artificial Neural Networks in Pattern Recognition网络公开度




书目名称Artificial Neural Networks in Pattern Recognition网络公开度学科排名




书目名称Artificial Neural Networks in Pattern Recognition被引频次




书目名称Artificial Neural Networks in Pattern Recognition被引频次学科排名




书目名称Artificial Neural Networks in Pattern Recognition年度引用




书目名称Artificial Neural Networks in Pattern Recognition年度引用学科排名




书目名称Artificial Neural Networks in Pattern Recognition读者反馈




书目名称Artificial Neural Networks in Pattern Recognition读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:08:58 | 显示全部楼层
K. Meßmer,H. Cotta,M. E. Müllers, which avoids the need for retraining the model. We perform experiments using the PASCAL-VOC2007 dataset. While the baseline SSD has 22M parameters and an mAP score of 77.20, the use of the SFCM (one of the plugins we used) increases the mAP score to 78.82 and the number of parameters to 25M.
发表于 2025-3-22 00:58:08 | 显示全部楼层
https://doi.org/10.1007/978-3-642-75445-6ness against noisy inputs. Our empirical results show that the new training regime improves the performance of echo state networks in an open loop setup under high noise and generally improves their performance in closed loop setups.
发表于 2025-3-22 04:56:00 | 显示全部楼层
Deutscher Bergbau in Geschichte und Ethos,r performance on NED and introduce a strategy to scale it to hundreds of thousands of formal names. Our experiments on several datasets for alias detection demonstrate that our system is capable of obtaining superior results with a large margin compared to other state-of-the-art systems.
发表于 2025-3-22 09:44:39 | 显示全部楼层
发表于 2025-3-22 16:02:24 | 显示全部楼层
发表于 2025-3-22 18:35:12 | 显示全部楼层
发表于 2025-3-23 00:30:35 | 显示全部楼层
发表于 2025-3-23 02:22:08 | 显示全部楼层
发表于 2025-3-23 08:14:07 | 显示全部楼层
über die Ursache des Geburtseintrittsmethod based on CNN and handcrafted features. Furthermore, a novel analysis technique for deep similarity networks is introduced for the purpose of finding relevant image regions. The proposed approach is evaluated qualitatively on video recordings of the German Broadcasting Archive.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 03:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表