找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[复制链接]
楼主: ISSUE
发表于 2025-3-30 09:02:23 | 显示全部楼层
,Transformer Based Prototype Learning for Weakly-Supervised Histopathology Tissue Semantic Segmentatto obtain more complete localization maps. Additionally, we introduce a self-refinement mechanism to dampen the falsely activated regions in the initial localization map. Extensive experiments on two histopathology datasets demonstrate that our proposed model achieves the state-of-the-art performanc
发表于 2025-3-30 15:34:36 | 显示全部楼层
发表于 2025-3-30 19:06:39 | 显示全部楼层
,A Graph Convolutional Siamese Network for the Assessment and Recognition of Physical Rehabilitation model reaches state-of-the-art performance on action classification and outperforms the Dynamic Time Warping algorithm and hidden Markov model method by a large margin in terms of assessment accuracy.
发表于 2025-3-30 23:18:52 | 显示全部楼层
发表于 2025-3-31 04:39:18 | 显示全部楼层
Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay
发表于 2025-3-31 07:06:38 | 显示全部楼层
https://doi.org/10.1007/978-3-7091-9977-0 of min-, max-, and average-pooling of the features, and 2) a self-attention mechanism. We evaluate the proposed method on multiple neural network architectures in a five-fold leave-patient-out cross-validation scheme and also against human experts on a withheld data set. We find that classification
发表于 2025-3-31 10:30:46 | 显示全部楼层
发表于 2025-3-31 14:56:39 | 显示全部楼层
Hartmut Bossel,Walter Heil,Alfred Puck87.20%, 83.12%, 0.85 and 0.85 respectively, which has achieved the best effect compared with other classification methods. Furthermore, visualization technique Grad-CAM++ is used to provide interpretability for the validity of our model.
发表于 2025-3-31 17:31:25 | 显示全部楼层
Zufallsschwingungen linearer Systeme,e dilated convolutions. In order to improve the ability to learn the precise boundary of the objects, a gated boundary-aware branch is introduced and utilized to concentrate on the object border region. The effectiveness and robustness of the network are confirmed by evaluating this method on the AC
发表于 2025-3-31 23:28:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 23:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表