找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[复制链接]
楼主: digestive-tract
发表于 2025-3-28 16:38:05 | 显示全部楼层
https://doi.org/10.1007/978-94-017-1540-9r, most existing drowsiness detection methods do not consider the early stages of drowsiness or the practical feasibility of detection. To address this issue, we propose a gaze behavior pattern-based drowsiness detection model that effectively distinguishes early drowsiness. First, we extract the ga
发表于 2025-3-28 19:48:22 | 显示全部楼层
发表于 2025-3-29 00:15:55 | 显示全部楼层
发表于 2025-3-29 04:12:15 | 显示全部楼层
发表于 2025-3-29 08:02:07 | 显示全部楼层
发表于 2025-3-29 14:30:27 | 显示全部楼层
Context Enhancement Methodology for Action Recognition in Still Images,prove feature representation. We performed a lot of experiments on the PASCAL VOC 2012 Action dataset and the Stanford 40 Actions dataset. The results demonstrate that our method performs effectively, with the state-of-the-arts outcomes being obtained on both datasets.
发表于 2025-3-29 17:50:45 | 显示全部楼层
发表于 2025-3-29 21:10:47 | 显示全部楼层
,Diversified Contrastive Learning For Few-Shot Classification,s of all base class prototypes and conduct class-level contrastive learning between K-way class prototypes obtained from the current task and all base class prototypes. Meanwhile, we dynamically update all stored base class prototypes as the training progresses. We validate our model on mimiImagenet
发表于 2025-3-30 00:56:44 | 显示全部楼层
,Enhancing Cross-Lingual Few-Shot Named Entity Recognition by Prompt-Guiding,nseen entity type information to the language model; 2) metric referents for predicting target language entity types; 3) a bridge between different languages that mitigates the language gap. Our experiments on several widely-used cross-lingual NER datasets (CoNLL, WikiAnn) in the few-shot setting de
发表于 2025-3-30 06:35:57 | 显示全部楼层
,FAIR: A Causal Framework for Accurately Inferring Judgments Reversals,’s performance. In addition, we discuss the generalization ability of large language models for legal intelligence tasks using ChatGPT as an example. Our experiment has found that the generalization ability of large language models still has defects, and mining causal relationships can effectively i
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-13 22:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表