找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2021; 30th International C Igor Farkaš,Paolo Masulli,Stefan Wermter Conference proc

[复制链接]
楼主: 厨房默契
发表于 2025-3-30 09:04:54 | 显示全部楼层
发表于 2025-3-30 13:07:04 | 显示全部楼层
发表于 2025-3-30 16:49:02 | 显示全部楼层
发表于 2025-3-30 21:19:29 | 显示全部楼层
https://doi.org/10.1007/978-3-658-18300-4 to enhance the robustness of the model based on adversarial training. This approach constructs the adversarial samples and treats them as the augmented data. Unlike previous methods that introduce token-level noise, our method introduces embedding-level noise and can obtain extra samples that are c
发表于 2025-3-31 02:18:45 | 显示全部楼层
https://doi.org/10.1007/978-3-322-85610-4 are unknown. Then, a surrogate model is trained to have similar functional (i.e. input-output mapping) and switching power characteristics as the oracle (black-box) model. Our results indicate that the inclusion of power consumption data increases the fidelity of the model extraction by up to 30% b
发表于 2025-3-31 08:12:06 | 显示全部楼层
Wilfried König VDI,Fritz Klocke VDIenta Anomaly Benchmark (NAB). Additionally, we also contribute by creating new baselines on the NAB with recent models such as REBM, DAGMM, LSTM-ED, and Donut, which have not been previously used on the NAB.
发表于 2025-3-31 12:00:00 | 显示全部楼层
Wilfried König VDI,Fritz Klocke VDIg strategy to train the model on a large-scale graph. It improves the scalability of the model. Second, we design an edge convolutional neural network layer to realize the fusion of edge neighborhood information. We take the reconstruction error as the evaluation criterion after stacking multiple ed
发表于 2025-3-31 13:51:48 | 显示全部楼层
发表于 2025-3-31 19:27:11 | 显示全部楼层
https://doi.org/10.1007/978-3-662-54207-1effectiveness of our proposed attention module. In particular, our proposed attention module achieves . Top-1 accuracy improvement on ImageNet classification over a ResNet101 baseline and 0.63 COCO-style Average Precision improvement on the COCO object detection on top of a Faster R-CNN baseline wit
发表于 2025-3-31 23:01:11 | 显示全部楼层
Verfahren mit rotatorischer Hauptbewegung,n. In response, a Deep Convolutional Neural Network (DCNN) model is explored as a surrogate for the physics-based model, so that it can be used to time-efficiently estimate the crack index for a given part-design. This requires careful design of the training regime and dataset for a given design pro
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 22:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表