找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2021; 30th International C Igor Farkaš,Paolo Masulli,Stefan Wermter Conference proc

[复制链接]
楼主: formation
发表于 2025-3-26 22:08:45 | 显示全部楼层
发表于 2025-3-27 02:46:30 | 显示全部楼层
https://doi.org/10.1007/978-3-662-07197-7ng. We propose a general framework in which 6 of these variants can be interpreted as different instances of the same approach. They are the vanilla gradient descent, the classical and generalized Gauss-Newton methods, the natural gradient descent method, the gradient covariance matrix approach, and
发表于 2025-3-27 05:20:42 | 显示全部楼层
发表于 2025-3-27 12:36:03 | 显示全部楼层
发表于 2025-3-27 14:33:22 | 显示全部楼层
发表于 2025-3-27 18:02:21 | 显示全部楼层
Artificial Neural Networks and Machine Learning – ICANN 2021978-3-030-86340-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-28 00:24:20 | 显示全部楼层
发表于 2025-3-28 02:19:05 | 显示全部楼层
https://doi.org/10.1007/978-3-642-56453-6square matrices. Our proposed unitary convolutional neural networks deliver up to 32% faster inference speeds and up to 50% reduction in permanent hard disk space while maintaining competitive prediction accuracy.
发表于 2025-3-28 07:43:51 | 显示全部楼层
发表于 2025-3-28 12:15:29 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 01:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表