找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2017; 26th International C Alessandra Lintas,Stefano Rovetta,Alessandro E.P. Confe

[复制链接]
楼主: 出租车
发表于 2025-3-30 09:26:37 | 显示全部楼层
Fernsehen – Internet – Konvergenzcessfully employed for nation-state APT attribution. We use sandbox reports (recording the behavior of the APT when run dynamically) as raw input for the neural network, allowing the DNN to learn high level feature abstractions of the APTs itself. Using a test set of 1,000 Chinese and Russian developed APTs, we achieved an accuracy rate of 94.6%.
发表于 2025-3-30 13:23:13 | 显示全部楼层
https://doi.org/10.1007/978-3-658-30251-1butions of groups and parameters that represent the noise as hidden variables. The model can be learned based on a variational Bayesian method. In numerical experiments, we show that the proposed model outperforms existing methods in terms of the estimation of the true labels of instances.
发表于 2025-3-30 18:12:19 | 显示全部楼层
发表于 2025-3-30 21:56:41 | 显示全部楼层
发表于 2025-3-31 02:51:02 | 显示全部楼层
发表于 2025-3-31 08:27:42 | 显示全部楼层
DeepAPT: Nation-State APT Attribution Using End-to-End Deep Neural Networkscessfully employed for nation-state APT attribution. We use sandbox reports (recording the behavior of the APT when run dynamically) as raw input for the neural network, allowing the DNN to learn high level feature abstractions of the APTs itself. Using a test set of 1,000 Chinese and Russian developed APTs, we achieved an accuracy rate of 94.6%.
发表于 2025-3-31 10:03:14 | 显示全部楼层
发表于 2025-3-31 13:23:04 | 显示全部楼层
发表于 2025-3-31 19:32:41 | 显示全部楼层
发表于 2025-4-1 01:13:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 12:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表