找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks and Machine Learning -- ICANN 2013; 23rd International C Valeri Mladenov,Petia Koprinkova-Hristova,Nikola K Conf

[复制链接]
楼主: 调停
发表于 2025-3-27 00:39:53 | 显示全部楼层
发表于 2025-3-27 03:51:57 | 显示全部楼层
发表于 2025-3-27 07:02:11 | 显示全部楼层
发表于 2025-3-27 11:38:10 | 显示全部楼层
发表于 2025-3-27 16:10:23 | 显示全部楼层
A Distributed Learning Algorithm Based on Frontier Vector Quantization and Information Theoryenetic algorithm. The results obtained from twelve classification data sets demonstrate the efficacy of the proposed method. In average, the distributed FVQIT performs 13.56 times faster than the FVQIT and improves classification accuracy by 5.25%.
发表于 2025-3-27 18:02:15 | 显示全部楼层
Learning with Hard Constraintsh provides a description of the “optimal body of the agent”, i.e. the functional structure of the solution to the proposed learning problem. It is shown that the solution can be represented in terms of a set of “support constraints”, thus extending the well-known notion of “support vectors”.
发表于 2025-3-28 01:17:43 | 显示全部楼层
Artificial Neural Networks and Machine Learning -- ICANN 2013978-3-642-40728-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-28 04:22:17 | 显示全部楼层
Fernsehaneignung und Alltagsgesprächethe system to utilise memory efficiently, and superimposed distributed representations in order to reduce the time complexity of a tree search to .(.), where . is the depth of the tree. This new work reduces the memory required by the architecture, and can also further reduce the time complexity.
发表于 2025-3-28 06:26:58 | 显示全部楼层
发表于 2025-3-28 14:20:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 01:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表