找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks; Hugh Cartwright Book 2015Latest edition Springer Science+Business Media New York 2015 ANN.Artificial Intellige

[复制链接]
查看: 25599|回复: 57
发表于 2025-3-21 16:57:38 | 显示全部楼层 |阅读模式
期刊全称Artificial Neural Networks
影响因子2023Hugh Cartwright
视频video
发行地址Includes cutting-edge methods and protocols.Provides step-by-step detail essential for reproducible results.Contains key notes and implementation advice from the experts.Includes supplementary materia
学科分类Methods in Molecular Biology
图书封面Titlebook: Artificial Neural Networks;  Hugh Cartwright Book 2015Latest edition Springer Science+Business Media New York 2015 ANN.Artificial Intellige
影响因子.This volume presents examples of how ANNs are applied in biological sciences and related areas. Chapters focus on the analysis of intracellular sorting information, prediction of the behavior of bacterial communities, biometric authentication, studies of Tuberculosis, gene signatures in breast cancer classification, use of mass spectrometry in metabolite identification, visual navigation, and computer diagnosis. Written in the highly successful .Methods in Molecular Biology. series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls..Authoritative and practical, .Artificial Neural Networks: Second Edition. aids scientists in continuing to study Artificial Neural Networks (ANNs)..
Pindex Book 2015Latest edition
The information of publication is updating

书目名称Artificial Neural Networks影响因子(影响力)




书目名称Artificial Neural Networks影响因子(影响力)学科排名




书目名称Artificial Neural Networks网络公开度




书目名称Artificial Neural Networks网络公开度学科排名




书目名称Artificial Neural Networks被引频次




书目名称Artificial Neural Networks被引频次学科排名




书目名称Artificial Neural Networks年度引用




书目名称Artificial Neural Networks年度引用学科排名




书目名称Artificial Neural Networks读者反馈




书目名称Artificial Neural Networks读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:48:10 | 显示全部楼层
https://doi.org/10.1057/9780230375130earch and potential applications of QSAR modeling tools toward the rational design of more efficient antibacterial agents. Particular emphasis is given to the setup of multitasking models along with ANNs aimed at jointly predicting different antibacterial activities and safety profiles of drugs/chem
发表于 2025-3-22 03:18:09 | 显示全部楼层
On Barbie, the Boob, and Loaeza,tool that is powered by the widely used machine learning package Weka. The software provides a user-friendly graphical interface along with an automated parameter search capability. It employs two robust and popular machine learning methods: artificial neural networks and support vector machines. Th
发表于 2025-3-22 07:10:28 | 显示全部楼层
发表于 2025-3-22 10:45:00 | 显示全部楼层
Damian Griffin,Shanmugam Karthikeyanes a compact holistic representation of the data and is thus an efficient way to encode a large set of views. Second, as we do not store the training views, we are not limited in the number of training views we use and the agent does not need to decide which views to learn.
发表于 2025-3-22 13:29:44 | 显示全部楼层
发表于 2025-3-22 17:40:16 | 显示全部楼层
发表于 2025-3-22 22:26:11 | 显示全部楼层
发表于 2025-3-23 01:33:59 | 显示全部楼层
1064-3745 nd practical, .Artificial Neural Networks: Second Edition. aids scientists in continuing to study Artificial Neural Networks (ANNs)..978-1-4939-4893-2978-1-4939-2239-0Series ISSN 1064-3745 Series E-ISSN 1940-6029
发表于 2025-3-23 07:25:59 | 显示全部楼层
Introduction to the Analysis of the Intracellular Sorting Information in Protein Sequences: From Mosis and localization/trafficking prediction. We provide the rationale for and a discussion of a simple basic protocol for protein sequence dissection looking for sorting signals, from simple sequence inspection techniques to more sophisticated artificial neural networks analysis of sorting signal re
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 07:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表