找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Nets and Genetic Algorithms; Proceedings of the I David W. Pearson,Nigel C. Steele,Rudolf F. Albrech Conference proceedin

[复制链接]
楼主: 愚蠢地活
发表于 2025-3-25 04:00:56 | 显示全部楼层
发表于 2025-3-25 08:42:53 | 显示全部楼层
发表于 2025-3-25 11:47:27 | 显示全部楼层
AA1*: A Dynamic Incremental Network that Learns by Discriminationction performed by the nodes and the overall network topology, so that the network grows (or shrinks) over time to fit the problem. Convergence is guaranteed on any arbitrary Boolean dataset and empirical generalisation results demonstrate promise.
发表于 2025-3-25 18:16:08 | 显示全部楼层
Functional Equivalence and Genetic Learning of RBF NetworksGaussian activation function and metrics induced by an inner product. The description of functional equivalent parameterizations is used for proposition of new genetic learning rules that operate only on a small part of the whole weight space.
发表于 2025-3-25 21:03:07 | 显示全部楼层
Using of Neural-Network and Expert System for Imissions Predictionis of a hydrometeorological forecast. The analysis carried out in this study is based on the application of neural nets (NN) and expert system (ES) methodology The prediction is made by putting to use both NN and ES in the form of an integrated system.
发表于 2025-3-26 01:17:54 | 显示全部楼层
发表于 2025-3-26 08:04:56 | 显示全部楼层
Feminist Challenges in the Information Agection performed by the nodes and the overall network topology, so that the network grows (or shrinks) over time to fit the problem. Convergence is guaranteed on any arbitrary Boolean dataset and empirical generalisation results demonstrate promise.
发表于 2025-3-26 10:50:36 | 显示全部楼层
Lamea Elle Shaaban-Magaña,Melanie L. MillerGaussian activation function and metrics induced by an inner product. The description of functional equivalent parameterizations is used for proposition of new genetic learning rules that operate only on a small part of the whole weight space.
发表于 2025-3-26 12:43:23 | 显示全部楼层
发表于 2025-3-26 19:16:01 | 显示全部楼层
https://doi.org/10.1007/978-3-7091-7535-4agents; algorithms; artificial neural network; control; fuzzy logic; genetic algorithms; learning; modeling
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 22:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表