找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence. ECAI 2023 International Workshops; XAI^3, TACTIFUL, XI- Sławomir Nowaczyk,Przemysław Biecek,Vania Dimitrov Confere

[复制链接]
楼主: 与生
发表于 2025-3-28 16:47:55 | 显示全部楼层
发表于 2025-3-28 19:11:52 | 显示全部楼层
A. M. Gaines,B. A. Peterson,O. F. Mendoza models by generating human-understandable explanations. The existing literature encompasses a diverse range of techniques, each relying on specific theoretical assumptions and possessing its own advantages and disadvantages. Amongst the available choices, hypercube-based SKE techniques are notable
发表于 2025-3-29 01:11:57 | 显示全部楼层
Analog weight adaptation hardware,and potential of interpretable machine learning, in particular PIP-Net, for automated diagnosis support on real-world medical imaging data. PIP-Net learns human-understandable prototypical image parts and we evaluate its accuracy and interpretability for fracture detection and skin cancer diagnosis.
发表于 2025-3-29 06:08:45 | 显示全部楼层
The Vector Decomposition Method,hods, they frequently assign importance to features which lack causal influence on the outcome variable. Selecting causally relevant features among those identified as relevant by these methods, or even before model training, would offer a solution. Feature selection methods utilizing information th
发表于 2025-3-29 08:37:15 | 显示全部楼层
https://doi.org/10.1007/978-3-319-76864-9is paper focuses on using model-based trees as surrogate models which partition the feature space into interpretable regions via decision rules. Within each region, interpretable models based on additive main effects are used to approximate the behavior of the black box model, striking for an optima
发表于 2025-3-29 11:51:25 | 显示全部楼层
发表于 2025-3-29 19:18:06 | 显示全部楼层
发表于 2025-3-29 23:10:12 | 显示全部楼层
发表于 2025-3-30 01:47:37 | 显示全部楼层
Artificial Intelligence. ECAI 2023 International Workshops978-3-031-50396-2Series ISSN 1865-0929 Series E-ISSN 1865-0937
发表于 2025-3-30 06:57:44 | 显示全部楼层
https://doi.org/10.1007/978-3-031-50396-2Artificial Intelligence; Machine Learning; Multi-Agent Systems; Reliability of Artificial Intelligence;
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 05:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表