找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence and Symbolic Computation; 13th International C Jacques Fleuriot,Dongming Wang,Jacques Calmet Conference proceedings

[复制链接]
楼主: 尤指植物
发表于 2025-3-28 14:54:57 | 显示全部楼层
Formalizing Some “Small” Finite Models of Projective Geometry in Coqh a combinatorial explosion in the number of cases to handle. We propose some easy-to-implement but relevant proof optimizations which, combined together, lead to an efficient way to deal with such large proofs.
发表于 2025-3-28 21:08:15 | 显示全部楼层
FMUS2: An Efficient Algorithm to Compute Minimal Unsatisfiable Subsetsoposed to improve its efficiency. Experimental results show that our algorithm performs well on many industrial and generated instances, and the strategies adopted can indeed improve the efficiency of our algorithm.
发表于 2025-3-28 23:56:22 | 显示全部楼层
What Does Qualitative Spatial Knowledge Tell About Origami Geometric Folds?ons using some existing spatial calculus. We attempt to divide the set of possible values of the parameters into disjoint spatial configurations that correspond to a specific number of fold lines. Our analyses and proofs use the power of a computer algebra system and in particular the Gröbner basis algorithm.
发表于 2025-3-29 06:42:31 | 显示全部楼层
发表于 2025-3-29 09:44:41 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/b/image/162327.jpg
发表于 2025-3-29 15:24:55 | 显示全部楼层
Artificial Intelligence and Symbolic Computation978-3-319-99957-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-29 18:27:55 | 显示全部楼层
Mohamed Rashwan,Mohamed Darwishlation profiles. This amounts to solving a system of . quadratic equations over the boolean cube .. We establish and discuss a computational approach to this autocorrelation problems, using the concept of runs. An algorithm is given to solve this problem and its application is illustrated with non-trivial examples.
发表于 2025-3-29 21:05:11 | 显示全部楼层
发表于 2025-3-30 03:14:47 | 显示全部楼层
https://doi.org/10.1007/978-3-319-99957-9Artificial intelligence; Automated theorem proving; Crowdsourcing; Formal logic; Geometric reasoning; Int
发表于 2025-3-30 06:11:26 | 显示全部楼层
978-3-319-99956-2Springer Nature Switzerland AG 2018
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 09:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表