找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence and Soft Computing; 20th International C Leszek Rutkowski,Rafał Scherer,Jacek M. Zurada Conference proceedings 2021

[复制链接]
楼主: INFER
发表于 2025-3-30 12:06:31 | 显示全部楼层
Karlheinz Lohs,Peter Elstner,Ursula Stephanent of skin lesions asymmetry, along with various variations of the PH2 database. For the best CNN network, we achieved the following results: true positive rate for the asymmetry 92.31%, weighted accuracy 67.41%, F1 score 0.646 and Matthews correlation coefficient 0.533.
发表于 2025-3-30 16:13:22 | 显示全部楼层
发表于 2025-3-30 19:03:32 | 显示全部楼层
https://doi.org/10.1007/b138937 the corpus and attack the most important words in each sentence. The rating is global to the whole corpus and not to each specific data point. This method performs equal or better when compared to previous attack methods, and its running time is around 39 times faster than previous models.
发表于 2025-3-30 21:00:59 | 显示全部楼层
发表于 2025-3-31 02:48:59 | 显示全部楼层
Karlheinz Lohs,Peter Elstner,Ursula Stephaneled training images, minimizing the specialist’s annotation effort. The validation of our proposed methodology is done on a public breast lesion-related dataset and our results show considerable accuracy gains over the traditional supervised learning approach and reductions of up to . in the labeled training sets.
发表于 2025-3-31 05:15:01 | 显示全部楼层
发表于 2025-3-31 09:58:10 | 显示全部楼层
发表于 2025-3-31 14:48:11 | 显示全部楼层
A Computer Vision Based Approach forDriver Distraction Recognition Using Deep Learning and Genetic A technique achieves an accuracy of 96.37%, surpassing the previously obtained 95.98%, and on the State Farm Driver Distraction Dataset, on which we attain an accuracy of 99.75%. The 6-Model Ensemble gave an inference time of 0.024 s as measured on our machine with Ubuntu 20.04(64-bit) and GPU as GeForce GTX 1080.
发表于 2025-3-31 21:03:29 | 显示全部楼层
发表于 2025-4-1 00:12:22 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 23:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表