找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence and Soft Computing; 22nd International C Leszek Rutkowski,Rafał Scherer,Jacek M. Zurada Conference proceedings 2023

[复制链接]
查看: 34116|回复: 62
发表于 2025-3-21 16:21:54 | 显示全部楼层 |阅读模式
期刊全称Artificial Intelligence and Soft Computing
期刊简称22nd International C
影响因子2023Leszek Rutkowski,Rafał Scherer,Jacek M. Zurada
视频video
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Artificial Intelligence and Soft Computing; 22nd International C Leszek Rutkowski,Rafał Scherer,Jacek M. Zurada Conference proceedings 2023
影响因子.The two-volume set LNAI 14125  and 14126 constitutes the refereed conference proceedings of the 22nd International Conference on Artificial Intelligence and Soft Computing, ICAISC 2023, held in Zakopane, Poland, during June 18–22, 2023. ..The 84 revised full papers presented in these proceedings were carefully reviewed and selected from 175 submissions. ..The papers are organized in the following topical sections: ..Part I:  Neural Networks and Their Applications; Evolutionary Algorithms and Their Applications; and Artificial Intelligence in Modeling and Simulation...Part II: Computer Vision, Image and Speech Analysis; Various Problems of Artificial Intelligence; Bioinformatics, Biometrics and Medical Applications; and Data Mining and Pateern Classification... .
Pindex Conference proceedings 2023
The information of publication is updating

书目名称Artificial Intelligence and Soft Computing影响因子(影响力)




书目名称Artificial Intelligence and Soft Computing影响因子(影响力)学科排名




书目名称Artificial Intelligence and Soft Computing网络公开度




书目名称Artificial Intelligence and Soft Computing网络公开度学科排名




书目名称Artificial Intelligence and Soft Computing被引频次




书目名称Artificial Intelligence and Soft Computing被引频次学科排名




书目名称Artificial Intelligence and Soft Computing年度引用




书目名称Artificial Intelligence and Soft Computing年度引用学科排名




书目名称Artificial Intelligence and Soft Computing读者反馈




书目名称Artificial Intelligence and Soft Computing读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:10:23 | 显示全部楼层
发表于 2025-3-22 01:42:32 | 显示全部楼层
发表于 2025-3-22 07:18:41 | 显示全部楼层
Michel E. Domsch,Sven H. A. Siemers that the proposed FH-K-SVCR model retains the advantages of a .-SVCR which achieves high classification performance in multi-classes classification task, and increases fault tolerance and robustness by using fuzzy set theory.
发表于 2025-3-22 09:28:15 | 显示全部楼层
发表于 2025-3-22 13:36:00 | 显示全部楼层
https://doi.org/10.1007/978-3-658-11219-6xiliary pretrained domain classification model can be used to build robust, shared domain feature representations. Our model achieves a classification accuracy improvement in standard cross-domain sentiment classification tasks over the baseline model in most cases.
发表于 2025-3-22 20:54:36 | 显示全部楼层
Karlheinz Lohs,Peter Elstner,Ursula Stephanod improves the resilience to adversarial attacks by achieving up to 17.1%, 22.8%, and 16.6% higher accuracy against BIM, FGSM, and PGD attacks, respectively, over ResNet-18 trained on the CIFAR-10 dataset.
发表于 2025-3-23 00:04:45 | 显示全部楼层
Reinforcement Learning with Brain-Inspired Modulation Improves Adaptation to Environmental Changesgorithms in simple but highly-dynamic tasks. It also exhibits a “paradox of choice” effect that has been observed in humans. The new rule may encapsulate a core principle of biological intelligence; an important component of human-like learning and adaptation - with both its benefits and trade-offs.
发表于 2025-3-23 02:00:02 | 显示全部楼层
发表于 2025-3-23 09:12:16 | 显示全部楼层
Learning Representations by Crystallized Back-Propagating Errors Since neural hierarchies are established because of the algorithm, ANN compartments start to function in terms of cognitive levels. This study shows the importance of dealing with ANN in hierarchies through backpropagation and brings in learning methods as novel ways of interacting with ANN. Practi
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 23:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表