找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence and Machine Learning; 34th Joint Benelux C Toon Calders,Celine Vens,Bart Goethals Conference proceedings 2023 The E

[复制链接]
楼主: 监督
发表于 2025-3-28 14:50:34 | 显示全部楼层
,Recipe for Fast Large-Scale SVM Training: Polishing, Parallelism, and More RAM!,both approaches to design an extremely fast dual SVM solver. We fully exploit the capabilities of modern compute servers: many-core architectures, multiple high-end GPUs, and large random access memory. On such a machine, we train a large-margin classifier on the ImageNet data set in 24 min.
发表于 2025-3-28 22:49:51 | 显示全部楼层
发表于 2025-3-28 23:39:14 | 显示全部楼层
发表于 2025-3-29 04:43:28 | 显示全部楼层
发表于 2025-3-29 07:38:57 | 显示全部楼层
https://doi.org/10.1007/978-981-97-2393-5both approaches to design an extremely fast dual SVM solver. We fully exploit the capabilities of modern compute servers: many-core architectures, multiple high-end GPUs, and large random access memory. On such a machine, we train a large-margin classifier on the ImageNet data set in 24 min.
发表于 2025-3-29 14:02:35 | 显示全部楼层
https://doi.org/10.1007/978-3-658-46377-9literature, from straightforward state aggregation to deep learned representations, and sketch challenges that arise when combining model-based reinforcement learning with abstraction. We further show how various methods deal with these challenges and point to open questions and opportunities for further research.
发表于 2025-3-29 15:37:59 | 显示全部楼层
1865-0929 Mechelen, Belgium, in November 2022..The 11 papers presented in this volume were carefully reviewed and selected from 134 regular submissions. They address various aspects of artificial intelligence such as natural language processing, agent technology, game theory, problem solving, machine learning
发表于 2025-3-29 23:19:17 | 显示全部楼层
发表于 2025-3-30 02:19:06 | 显示全部楼层
发表于 2025-3-30 06:52:30 | 显示全部楼层
,A View on Model Misspecification in Uncertainty Quantification,ys exists as models are mere simplifications or approximations to reality. The question arises whether the estimated uncertainty under model misspecification is reliable or not. In this paper, we argue that model misspecification should receive more attention, by providing thought experiments and contextualizing these with relevant literature.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 23:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表