找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence XL; 43rd SGAI Internatio Max Bramer,Frederic Stahl Conference proceedings 2023 The Editor(s) (if applicable) and Th

[复制链接]
查看: 48035|回复: 52
发表于 2025-3-21 19:34:03 | 显示全部楼层 |阅读模式
期刊全称Artificial Intelligence XL
期刊简称43rd SGAI Internatio
影响因子2023Max Bramer,Frederic Stahl
视频video
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Artificial Intelligence XL; 43rd SGAI Internatio Max Bramer,Frederic Stahl Conference proceedings 2023 The Editor(s) (if applicable) and Th
影响因子.This book constitutes the refereed proceedings of the 43rd SGAI International Conference on Artificial Intelligence,  AI 2023, held in Cambridge, UK, during December 12–14, 2023..The 27 full papers and 20 short papers included in this book are carefully reviewed and selected from 67 submissions. They were organized in topical sections as follows: Technical Papers: Speech and Natural Language Analysis, Image Analysis, Neural Nets, Case Based Reasoning and Short Technical Papers. Application Papers: Machine Learning Applications, Machine Vision Applications, Knowledge Discovery and Data Mining Applications, other AI Applications and Short Application Papers..
Pindex Conference proceedings 2023
The information of publication is updating

书目名称Artificial Intelligence XL影响因子(影响力)




书目名称Artificial Intelligence XL影响因子(影响力)学科排名




书目名称Artificial Intelligence XL网络公开度




书目名称Artificial Intelligence XL网络公开度学科排名




书目名称Artificial Intelligence XL被引频次




书目名称Artificial Intelligence XL被引频次学科排名




书目名称Artificial Intelligence XL年度引用




书目名称Artificial Intelligence XL年度引用学科排名




书目名称Artificial Intelligence XL读者反馈




书目名称Artificial Intelligence XL读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:58:39 | 显示全部楼层
发表于 2025-3-22 00:40:03 | 显示全部楼层
Exploring Multilingual Word Embedding Alignments in BERT Models: A Case Study of English and Norwegialysis also shows that embedding a word encodes information about the language to which it belongs. We, therefore, believe that in pre-trained multilingual models’ knowledge from one language can be transferred to another without direct supervision and help solve the data sparsity problem for minor
发表于 2025-3-22 06:05:07 | 显示全部楼层
发表于 2025-3-22 12:08:57 | 显示全部楼层
发表于 2025-3-22 16:46:41 | 显示全部楼层
发表于 2025-3-22 20:42:18 | 显示全部楼层
发表于 2025-3-22 22:00:17 | 显示全部楼层
Deep Despeckling of SAR Images to Improve Change Detection Performancesed method demonstrate superior performance compared to state-of-the-art methods such as DDNet and LANTNet performance. Our method significantly increased the change detection accuracy from a baseline of 86.65% up to 90.79% for DDNet and from 87.16% to 91.1% for LANTNet in the Yellow River dataset.
发表于 2025-3-23 05:17:43 | 显示全部楼层
Profiling Power Consumption for Deep Learning on Resource Limited Devicesa common approach to facilitate such deployments. This paper investigates the power consumption behaviour of CNN models from the DenseNet, EfficientNet, MobileNet, ResNet, ConvNeXt & RegNet architecture families, processing imagery on board a Nvidia Jetson Orin Nano platform. It was found that energ
发表于 2025-3-23 08:11:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 06:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表