找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence; First CAAI Internati Lu Fang,Yiran Chen,Weisheng Dong Conference proceedings 2021 Springer Nature Switzerland AG 2

[复制链接]
楼主: monster
发表于 2025-3-23 13:01:57 | 显示全部楼层
Diagnosis of Childhood Autism Using Multi-modal Functional Connectivity via Dynamic Hypergraph LearnASD). In recent years, some studies have hypothesized the stationary assumption and revealed the relevance of the time-varying anomaly in FC to the autistic traits. While most existing work focus on exploring properties of static FC (sFC) and dynamic FC (dFC) separately, little efforts have been mad
发表于 2025-3-23 14:47:57 | 显示全部楼层
发表于 2025-3-23 19:36:30 | 显示全部楼层
White-Box Attacks on the CNN-Based Myoelectric Control Systemcomputer interaction. Nevertheless, it was found that CNN models are very easily tricked by adversarial instances, which are normal instances with tiny intentional perturbations. In this study, an attack framework based on universal adversarial perturbations (UAP) was proposed to attack the CNN-base
发表于 2025-3-24 02:04:01 | 显示全部楼层
发表于 2025-3-24 04:21:43 | 显示全部楼层
发表于 2025-3-24 08:06:28 | 显示全部楼层
发表于 2025-3-24 14:04:25 | 显示全部楼层
发表于 2025-3-24 18:02:21 | 显示全部楼层
Neighborhood Search Acceleration Based on Deep Reinforcement Learning for SSCFLPitated Facility Location Problem (SSCFLP). Specifically, we construct a deep reinforcement learning model which learns a disturbing strategy to iteratively select the customers to be adjusted, and design a neighborhood operator to generate a new solution by reassigning the selected customers. The pr
发表于 2025-3-24 20:27:24 | 显示全部楼层
Darl Kuhn,Sam R. Alapati,Bill Padfield, we propose Gradient Re-weighting Module (GRM) to re-distribute each instance’s gradient contribution to the representation learning network. Extensive experiments on the long-tailed benchmark CIFAR10-LT, CIFAR100-LT and ImageNet-LT demonstrate the effectiveness of our proposed method.
发表于 2025-3-25 02:49:11 | 显示全部楼层
Increasing Oversampling Diversity for Long-Tailed Visual Recognition, we propose Gradient Re-weighting Module (GRM) to re-distribute each instance’s gradient contribution to the representation learning network. Extensive experiments on the long-tailed benchmark CIFAR10-LT, CIFAR100-LT and ImageNet-LT demonstrate the effectiveness of our proposed method.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 23:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表