找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Arithmetic of Finite Fields; 6th International Wo Sylvain Duquesne,Svetla Petkova-Nikova Conference proceedings 2016 Springer International

[复制链接]
楼主: mobility
发表于 2025-3-27 00:59:09 | 显示全部楼层
发表于 2025-3-27 04:19:51 | 显示全部楼层
https://doi.org/10.1007/978-1-4302-6710-2stribution of the function values over general finite fields and over elliptic curves defined over prime finite fields. We also prove lower bounds on the degree of polynomials interpolating the values of these functions in these two settings.
发表于 2025-3-27 08:57:34 | 显示全部楼层
Advanced Execution Plan Conceptsolean functions to that of Gauss sums. In the case of extensions of degree four times an odd number, an explicit formula involving a Kloosterman sum is conjectured, proved with further restrictions, and supported by extensive experimental data in the general case. In particular, the validity of this
发表于 2025-3-27 10:39:31 | 显示全部楼层
发表于 2025-3-27 13:53:33 | 显示全部楼层
Arithmetic of Finite Fields978-3-319-55227-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-27 20:47:31 | 显示全部楼层
发表于 2025-3-28 00:07:13 | 显示全部楼层
https://doi.org/10.1007/978-1-4302-2669-7tivity of the binary operation for the composed product is not necessary. We then investigate binary operations defined by polynomial functions, and give a sufficient condition in terms of degrees for the requirement in the Brawley-Carlitz theorem.
发表于 2025-3-28 04:17:48 | 显示全部楼层
发表于 2025-3-28 06:52:26 | 显示全部楼层
https://doi.org/10.1007/978-1-4302-6710-2stribution of the function values over general finite fields and over elliptic curves defined over prime finite fields. We also prove lower bounds on the degree of polynomials interpolating the values of these functions in these two settings.
发表于 2025-3-28 11:11:58 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 03:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表