找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Arithmetic Geometry over Global Function Fields; Gebhard Böckle,David Burns,Douglas Ulmer,Francesc Textbook 2014 Springer Basel 2014 Drin

[复制链接]
查看: 48469|回复: 35
发表于 2025-3-21 18:03:03 | 显示全部楼层 |阅读模式
期刊全称Arithmetic Geometry over Global Function Fields
影响因子2023Gebhard Böckle,David Burns,Douglas Ulmer,Francesc
视频videohttp://file.papertrans.cn/162/161596/161596.mp4
发行地址Includes a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell–We
学科分类Advanced Courses in Mathematics - CRM Barcelona
图书封面Titlebook: Arithmetic Geometry over Global Function Fields;  Gebhard Böckle,David Burns,Douglas Ulmer,Francesc  Textbook 2014 Springer Basel 2014 Drin
影响因子This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell-Weil groups of high rank) and a state of the art survey of Geometric Iwasawa Theory explaining the recent proofs of various versions of the Main Conjecture,
Pindex Textbook 2014
The information of publication is updating

书目名称Arithmetic Geometry over Global Function Fields影响因子(影响力)




书目名称Arithmetic Geometry over Global Function Fields影响因子(影响力)学科排名




书目名称Arithmetic Geometry over Global Function Fields网络公开度




书目名称Arithmetic Geometry over Global Function Fields网络公开度学科排名




书目名称Arithmetic Geometry over Global Function Fields被引频次




书目名称Arithmetic Geometry over Global Function Fields被引频次学科排名




书目名称Arithmetic Geometry over Global Function Fields年度引用




书目名称Arithmetic Geometry over Global Function Fields年度引用学科排名




书目名称Arithmetic Geometry over Global Function Fields读者反馈




书目名称Arithmetic Geometry over Global Function Fields读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:20:48 | 显示全部楼层
Arithmetic of Gamma, Zeta and Multizeta Values for Function Fields,ts and discussed some open problems regarding the gamma and zeta functions in the function field context. The first four lectures of these notes, dealing with gamma, roughly correspond to the first four lectures of one and half hour each, and the last three lectures, dealing with zeta, cover the las
发表于 2025-3-22 02:02:06 | 显示全部楼层
发表于 2025-3-22 06:10:36 | 显示全部楼层
发表于 2025-3-22 09:10:28 | 显示全部楼层
发表于 2025-3-22 15:16:07 | 显示全部楼层
发表于 2025-3-22 20:56:31 | 显示全部楼层
发表于 2025-3-22 23:05:25 | 显示全部楼层
2297-0304 its geometric analogues, and the construction of Mordell–WeThis volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the
发表于 2025-3-23 05:25:00 | 显示全部楼层
发表于 2025-3-23 06:37:15 | 显示全部楼层
Arithmetic Geometry over Global Function Fields978-3-0348-0853-8Series ISSN 2297-0304 Series E-ISSN 2297-0312
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-21 11:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表