找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Arithmetic Algebraic Geometry; G. Geer,F. Oort,J. Steenbrink Book 1991 Springer Science+Business Media New York 1991 Algebraic K-theory.Ar

[复制链接]
楼主: Limbic-System
发表于 2025-3-30 11:55:07 | 显示全部楼层
发表于 2025-3-30 14:32:38 | 显示全部楼层
Experiments in Life-Writing: Introduction, maps. Here, ..(.) denotes the Jacobian Pic.(..(.)) of the standard modular curve ..(.), for each integer . ≥ 1. Also, we have written ..(.). for the product ..(.) × ..(.), and have used analogous notation for ..(.).. The definitions of α and β will be given below; see also [6], §2a.
发表于 2025-3-30 18:33:01 | 显示全部楼层
发表于 2025-3-30 20:59:18 | 显示全部楼层
Palgrave Studies in Life WritingThe purpose of the following paper is to show how one can relate elliptic curves . with covering curves . of genus 2 and arithmetical properties of . and . in the case that the ground field is a global field.
发表于 2025-3-31 03:28:06 | 显示全部楼层
Experiments in Life-Writing: Introduction,In this paper we will say that a simple abelian variety . is . if there is a number field . with [.: .] = 2 dim(.) such that . ⊂ End°(.). If X is any abelian variety, then we will say that . is of CM type if all its simple factors are. Equivalently, . is of CM type if there are number fields .. such that Σ[..: .] = 2dim(.) and ⊕.. ⊂ End°(.).
发表于 2025-3-31 07:09:03 | 显示全部楼层
https://doi.org/10.1007/978-3-319-55414-3Pour tout entier ., notons .. le polynôme ., où [.] est la partie entière de .. Disons qu’une courbe . de genre [./2], définie sur un corps ., est à multiplications réelles par .. s’il existe une correspondance . sur . telle que .. soit le polynôme caractéristique de l’endomorphisme induit par . sur les différentielles de première espèce de ..
发表于 2025-3-31 12:34:06 | 显示全部楼层
发表于 2025-3-31 17:00:21 | 显示全部楼层
发表于 2025-3-31 19:36:55 | 显示全部楼层
Experiments in Life-Writing: Introduction,Let . denote an elliptic curve over . without complex multiplication. It is shown that the exponents of the groups .(..) grow at least as fast as ..
发表于 2025-3-31 22:30:23 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 21:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表