找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques; 7th International Wo Klaus Jansen,Sanjeev Khanna,Da

[复制链接]
楼主: Clinton
发表于 2025-3-27 00:53:09 | 显示全部楼层
发表于 2025-3-27 01:55:47 | 显示全部楼层
https://doi.org/10.1007/978-3-319-74908-2pping. The total additive distortion is the sum of errors in all pairwise distances in the input data. This problem has been shown to be NP-hard by [13]. We give an .(log.) approximation for this problem by using Garg .’s [10] algorithm for the multi-cut problem as a subroutine. Our algorithm also g
发表于 2025-3-27 07:48:27 | 显示全部楼层
Dynamics of Geodesic and Horocyclic Flows,hs of at most logarithmic radius, an .(log..) additive approximation algorithm is known, hence our lower bound is tight. To the best of our knowledge, this is the first tight additive polylogarithmic approximation result.
发表于 2025-3-27 12:48:53 | 显示全部楼层
Jouni Parkkonen,Frédéric Paulinontains two variables. Hastad shows that this problem is NP-hard to approximate within a ratio of 11/12 + . for .=2, and Andersson, Engebretsen and Hastad show the same hardness of approximation ratio for . ≥ 11, and somewhat weaker results (such as 69/70) for . = 3,5,7. We prove that max-2lin. is e
发表于 2025-3-27 14:11:03 | 显示全部楼层
发表于 2025-3-27 21:14:10 | 显示全部楼层
发表于 2025-3-28 01:19:51 | 显示全部楼层
Theodore P. Hill,Ulrich Krengel algorithms for ... which is the problem to satisfy as many conjunctions, each of size at most ., as possible. As observed by Trevisan, this leads to approximation algorithms with the same approximation ratio for the more general problem ..., where instead of conjunctions arbitrary .-ary constraints
发表于 2025-3-28 03:50:15 | 显示全部楼层
发表于 2025-3-28 06:55:31 | 显示全部楼层
发表于 2025-3-28 13:42:03 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 01:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表