找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques; 10th International W Moses Charikar,Klaus Jansen,J

[复制链接]
楼主: 帐簿
发表于 2025-3-26 23:13:59 | 显示全部楼层
发表于 2025-3-27 03:44:36 | 显示全部楼层
发表于 2025-3-27 05:29:18 | 显示全部楼层
Die Aufgabenstellung der Untersuchung . ∈ ., . where . is a universal constant. Conversely we show that the above quadratic dependence on log. cannot be improved in general. Such embeddings, which we call ., yield a framework for the design of approximation algorithms for a wide range of clustering problems with monotone costs, includi
发表于 2025-3-27 09:55:46 | 显示全部楼层
Quelle und Methode der Untersuchung. and a target . ≤ |.|, compute the minimum length tour that contains . and at least . other vertices. We present a polynomial time .(log..·log.)-approximation algorithm for this problem. We use this algorithm for directed .-TSP to obtain an .(log..)-approximation algorithm for the . problem. This a
发表于 2025-3-27 17:39:00 | 显示全部楼层
https://doi.org/10.1007/978-3-642-69817-0A predicate is approximation resistant if no probabilistic polynomial time approximation algorithm can do significantly better then the naive algorithm that picks an assignment uniformly at random. Assuming that the Unique Games Conjecture is true we prove that most Boolean predicates are approximation resistant.
发表于 2025-3-27 21:50:13 | 显示全部楼层
发表于 2025-3-27 22:22:39 | 显示全部楼层
发表于 2025-3-28 04:46:38 | 显示全部楼层
发表于 2025-3-28 06:34:37 | 显示全部楼层
发表于 2025-3-28 11:11:10 | 显示全部楼层
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques978-3-540-74208-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 02:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表