找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Approximation by Solutions of Partial Differential Equations; B. Fuglede,M. Goldstein,L. Rogge Book 1992 Springer Science+Business Media D

[复制链接]
楼主: PLY
发表于 2025-3-25 05:47:41 | 显示全部楼层
H. Lindemann,F. Keller,H. G. Velcovskye operators, both localized in energy, are shown to map a weighted ..-space into a slightly larger weighted ..-space. The scattering operator, localized in energy, is shown to be bounded on all the weighted ..-spaces.
发表于 2025-3-25 10:16:31 | 显示全部楼层
发表于 2025-3-25 12:03:58 | 显示全部楼层
发表于 2025-3-25 17:32:09 | 显示全部楼层
发表于 2025-3-25 23:15:51 | 显示全部楼层
发表于 2025-3-26 00:40:46 | 显示全部楼层
发表于 2025-3-26 04:32:01 | 显示全部楼层
Mean Value Theorems and Best ,,-Approximation,ual) two functions .. and .. are identified if they are equal Lebesgue a.e.. Further, let . be a vector subspace of ..(.) and suppose that . ∊ ..(.) ., and that .* ∊ .. Then .* is called a ...-... if and only if‖.− .*‖. ≥ ‖. − .‖... ∊ ..
发表于 2025-3-26 09:00:12 | 显示全部楼层
Mapping Properties of the Wave Operators in Scattering Theory,e operators, both localized in energy, are shown to map a weighted ..-space into a slightly larger weighted ..-space. The scattering operator, localized in energy, is shown to be bounded on all the weighted ..-spaces.
发表于 2025-3-26 15:13:11 | 显示全部楼层
The Role of the Hilbert Transform in 2-Dimensional Aerodynamics, known that the Hilbert transform . plays an important role in various areas of aerodynamics for thin obstacles [4], and in this note we show, as an application of ., how to define the natural steady flows outside a thin obstacle.
发表于 2025-3-26 17:46:22 | 显示全部楼层
K. G. Blume,H. Arnold,G. W. LöhrTwo separate but related topics are discussed.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 17:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表