找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Approximation by Max-Product Type Operators; Barnabás Bede,Lucian Coroianu,Sorin G. Gal Book 2016 Springer International Publishing Switze

[复制链接]
楼主: FERN
发表于 2025-3-26 21:48:30 | 显示全部楼层
发表于 2025-3-27 01:07:20 | 显示全部楼层
Ergebnisse der experimentellen Balneologie,wing the ideas in Theorem . (see also Subsection ., Property C) it is easily seen that all the approximation and shape preserving properties proved for ...(.)(.) and . below in this chapter remain valid for the max-product operators . and ..
发表于 2025-3-27 06:54:56 | 显示全部楼层
Book 2016type operators and convolution type operators: firstly, as possibilistic expectations of somefuzzy variables, and secondly, as bases for the Feller type scheme in terms of the possibilistic integral. These approaches also offer new proofs for the uniform convergence based on a Chebyshev type inequal
发表于 2025-3-27 13:02:07 | 显示全部楼层
omefuzzy variables, and secondly, as bases for the Feller type scheme in terms of the possibilistic integral. These approaches also offer new proofs for the uniform convergence based on a Chebyshev type inequal978-3-319-81697-5978-3-319-34189-7
发表于 2025-3-27 14:39:01 | 显示全部楼层
发表于 2025-3-27 18:31:17 | 显示全部楼层
Approximation by Max-Product Interpolation Operators, on Chebyshev knots of first kind, max-product Lagrange operator on Chebyshev knots of second kind, and max-product Lagrange operator on equidistant and on general Jacobi knots. An important characteristic of the approximation error estimates obtained is that they are all of Jackson-type, thus essen
发表于 2025-3-27 22:27:11 | 显示全部楼层
发表于 2025-3-28 05:34:49 | 显示全部楼层
Possibilistic Approaches of the Max-Product Type Operators,a random variable based on the Bernoulli distribution and uses the Chebyshev’s inequality in probability theory (see [.], or the more available [.]). The first main aim of this chapter is to give a proof for the convergence of the max-product Bernstein operators by using the possibility theory, whic
发表于 2025-3-28 08:45:17 | 显示全部楼层
8楼
发表于 2025-3-28 10:41:11 | 显示全部楼层
8楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 23:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表