找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Approximation Theory XVI; Nashville, TN, USA, Gregory E. Fasshauer,Marian Neamtu,Larry L. Schuma Conference proceedings 2021 Springer Natu

[复制链接]
楼主: obesity
发表于 2025-3-28 16:48:00 | 显示全部楼层
发表于 2025-3-28 22:05:08 | 显示全部楼层
Approximation Theory XVI978-3-030-57464-2Series ISSN 2194-1009 Series E-ISSN 2194-1017
发表于 2025-3-28 23:06:55 | 显示全部楼层
发表于 2025-3-29 04:18:57 | 显示全部楼层
,Säkulare Aenderungen der Sicht,ivariable setting. Additionally, we show a variety of applications of the Quantitative BLT, proving in particular nonsymmetric BLTs in both the discrete and continuous setting for functions with more than one argument. Finally, in direct analogy of the continuous setting, we show the Quantitative Finite BLT implies the Finite BLT.
发表于 2025-3-29 10:54:53 | 显示全部楼层
发表于 2025-3-29 12:22:21 | 显示全部楼层
发表于 2025-3-29 16:03:09 | 显示全部楼层
On Eigenvalue Distribution of Varying Hankel and Toeplitz Matrices with Entries of Power Growth or We study the distribution of eigenvalues of varying Toeplitz and Hankel matrices such as . and . where .. behaves roughly like .. for some non- 0 complex number ., and . →.. This complements earlier work on these matrices when the coefficients . arise from entire functions.
发表于 2025-3-29 23:06:55 | 显示全部楼层
On the Gradient Conjecture for Quadratic Polynomials,The gradient conjecture asserts that for homogeneous polynomials . and . the equality .(∇.) = 0 implies .(∇). = 0. We verify this conjecture for quadratic polynomials and present a few applications to density problems and characterization of derivation operator.
发表于 2025-3-30 03:03:28 | 显示全部楼层
Non-stationary Subdivision Schemes: State of the Art and Perspectives,ete data, by repeated level dependent linear refinements. In particular the paper emphasises the potentiality of these schemes and the wide perspective they open, in comparison with stationary schemes based on level-independent linear refinements.
发表于 2025-3-30 05:52:09 | 显示全部楼层
Balian-Low Theorems in Several Variables,ivariable setting. Additionally, we show a variety of applications of the Quantitative BLT, proving in particular nonsymmetric BLTs in both the discrete and continuous setting for functions with more than one argument. Finally, in direct analogy of the continuous setting, we show the Quantitative Finite BLT implies the Finite BLT.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 12:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表